$6^{\text {th }}$ Grade Math Common Assessment Answer Key: Chapter 8 (15 Points)

Name: \qquad Date \qquad
6.RP.3d
1.) Heather's desk is 3 feet long. About how long is it in meters? (1 point)

Use 1 foot ≈ 0.305 meter.
A. 0.00915 meter
B. 0.9015 meter
C. 0.915 meters
D. 9.15 meters
2.) Joan mails a package that weighs 140 grams. About how many ounces is the package? (1 point)

Use 1 ounce ≈ 28.4 grams.
A. 0.2 ounce
B. 4.9 ounces
C. 168.4 ounces
D. 403.3 ounces

6.G. 1

3.) What is the area of the triangle in the figure below? (1 point)

Use the formula $\mathrm{A}=\mathrm{bh} \frac{1}{2}$
$10.9375 \mathrm{~cm}^{2}$

4.) Find the area of the polygon below by dividing it into two rectangles using one vertical line. Show your work. (1 point area, 2 points for reasonable work)

Area of left rectangle:

$A=(1.5)(3.5)=5.25 \mathrm{~cm}^{2}$
Area of right rectangle:
$A=(5-1.5)(3.5-1.5)=(3.5)(2)=7 \mathrm{~cm}^{2}$
Total area: $5.25 \mathrm{~cm}^{2}+7 \mathrm{~cm}^{2}=12.25 \mathrm{~cm}^{2}$

6.G. 2

5.) What is the volume of the rectangular prism? (1 point)

Use the formula $\mathrm{V}=\mathrm{I} w h$
$144 \frac{3}{8} \mathrm{in}^{2}$

6.G. 4

6.) An employee of a store's gift wrapping center is wrapping 8 gifts, each in the same size box. The dimensions of the box are shown below.
a. Draw a net for this box. (1point)

Possible net drawing.

b. Find the surface area of the box. Show your work. (1point surface area, 1 point reasonable work)

The area A of a rectangle is $A=b h$, where b is the base of the rectangle and h is the height. The area of each rectangle with side lengths 1.5 ft and 2 ft is $1.5 \times 2=3$ ft^{2}. Since there are two rectangles with these dimensions, the combined area is $2 \times$ $3=6 \mathrm{ft}^{2}$. The area of each rectangle with side lengths 1.5 ft and 2.5 ft is $1.5 \times 2.5=$ $3.75 \mathrm{ft}^{2}$. The area of each rectangle with side lengths 2 ft and 2.5 ft is $2 \times 2.5=5 \mathrm{ft}^{2}$. Since there are two rectangles of each type, the combined area is $2 \times 3.75+2 \times 5$ $=17.5 \mathrm{ft}^{2}$. So, the total surface area of the box is $6 \mathrm{ft}^{2}+17.5 \mathrm{ft}^{2}=23.5 \mathrm{ft}^{2}$
c. If there is only 160 square feet of wrapping paper left, will the employee be able to wrap all of the gifts? Explain. (1 point for answer, 1 point for explanation)

The employee needs to wrap 8 boxes, each with a surface area of $23.5 \mathrm{ft}^{2}$. So, the combined surface area needing to be wrapped is $8 \times 23.5=188 \mathrm{ft}^{2}$. Since there is only 160 square feet of wrapping paper left, the employee will not be able to wrap all of the gifts.

6.G.5 Teachers this is a local standard added to the pacing guide. You will need to supplement.

7.) One circle has a 96 cm diameter and another circle has a 295.16 cm circumference. Which circle has a larger radius? Explain using 3.14 for π. (1 point for answer, 2 points for explanation)

The circle with the 96 cm diameter has a larger radius. The circle with a 96 cm diameter has a $96 \div 2=48 \mathrm{~cm}$ radius. Use the formula for the circumference of a circle to find the radius of the circle that has a 295.16 cm circumference.
$C=2 \pi r$
$295.16=2 \pi r$
$295.16 \approx 2 \cdot 3.14 \cdot r$
$295.16 \approx 6.28 \cdot r$
295.16
$6.28 \approx 6.28 r$
6.28
$47 \approx r$
The radius of this circle is about 47 cm . So, the circle with the 48 cm radius is the bigger circle.

