Algebraic Modeling Class Curriculum (First semester) Pre-requisite Passed HSQE or instructor's approval

Mathematical Domain	Cluster	Standard
Number and Quantity	Reason quantitatively and use units to solve	N-Q.1. Use units as a way to understand problems and to guide the solution of multi-step
Standards (N-Q)	problems.	problems; choose and interpret units consistently in formulas; choose and interpret the scale
		and the origin in graphs and data displays.
		N-Q.2. Define appropriate quantities for the purpose of descriptive modeling.
		N-Q.3. Choose a level of accuracy appropriate to limitations on measurement when reporting
		quantities.
Algebraic Standards (A-	Interpret the structure of expressions.	A-SSE.2. Use the structure of an expression to identify ways to rewrite it. For example, see x4 –
SSE)		y4 as $(x2)2 - (y2)2$, thus recognizing it as a difference of squares that can be factored as $(x2 - y2)(x2 + y2)$.
	Write expressions in equivalent forms to solve problems.	A-SSE.3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.*
		a. Factor a quadratic expression to reveal the zeros of the function it defines. For example, $x^2 + 4x + 3 = (x + 3)(x + 1)$.
		b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. For example, $x^2 + 4x + 3 = (x + 2)^2 - 1$.
		c. Use the properties of exponents to transform expressions for exponential functions. <i>For</i>
		example the expression 1.15t can be rewritten as $(1.151/12)12t \approx 1.01212t$ to reveal the
		approximate equivalent monthly interest rate if the annual rate is 15%.
Algegraic Standards (A-	Create equations and inequalities that describe	A-CED.1. Create equations and inequalities in one variable and use them to solve problems.
CED)	numbers or relationships.	Include equations arising from linear and quadratic functions, and simple rational and
		exponential functions.
		A-CED.2. Create equations in two or more variables to represent relationships between
		quantities; graph equations on coordinate axes with labels and scales.
		A-CED.3. Represent constraints by equations or inequalities, and by systems of equations
		and/or inequalities, and interpret solutions as viable or nonviable options in a modeling
		context. For example, represent inequalities describing cost constraints in various situations.
		A-CED.4. Rearrange formulas (literal equations) to highlight a quantity of interest, using the
		same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight
		resistance R.
Algegraic Standards (A-	Solve equations and inequalities in one variable.	A-REI.3. Solve linear equations and inequalities in one variable, including equations with
REI)		coefficients represented by letters.

Mathematical Domain	Cluster	Standard
		A-REI.4. Solve quadratic equations in one variable.
		a. Use the method of completing the square to transform any quadratic equation in x into an
		equation of the form $(x - p)2 = q$ that has the same solutions. Derive the quadratic formula
		from this form.
		b. Solve quadratic equations by inspection (e.g., for $x2 = 49$), taking square roots, completing
		the square, the quadratic formula and factoring, as appropriate to the initial form of the
		equation. Recognize when the quadratic formula gives complex solutions and write them as a
		\pm bi for real numbers a and b .
	Represent and solve equations and inequalities	A-REI.10. Understand that the graph of an equation in two variables is the set of all its
	graphically.	solutions plotted in the coordinate plane, often forming a curve (which could be a line).
		A-REI.11. Explain why the x-coordinates of the points where the graphs of the equations y =
		f(x) and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions
		approximately, e.g., using technology to graph the functions, make tables of values, or find
		successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial,
		rational, absolute value, exponential, and logarithmic functions.*
		A-REI.12. Graph the solutions to a linear inequality in two variables as a half-plane (excluding
		the boundary in the case of a strict inequality), and graph the solution set to a system of linear
		inequalities in two variables as the intersection of the corresponding half-planes.
Functions Standards (F-	Interpret functions that arise in applications in	F-IF.4. For a function that models a relationship between two quantities,
IF)	terms of the context.	• interpret key features of graphs and tables in terms of the quantities, and
		•sketch graphs showing key features given a verbal description of the relationship.
		Key features include: intercepts; intervals where the function is increasing, decreasing, positive,
		or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*
		F-IF.5. Relate the domain of a function to its graph and, where applicable, to the quantitative
		relationship it describes. For example, if the function h(n) gives the number of person-hours it
		takes to assemble n engines in a factory, then negative numbers would be an appropriate
		domain for the function.*
		F-IF.6. Calculate and interpret the average rate of change of a function (presented symbolically
		or as a table) over a specified interval. Estimate the rate of change from a graph.*

Mathematical Domain	Cluster	Standard
	Analyze functions using different representations.	F-IF.7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*
		a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
		b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
		c. Graph polynomial functions, identifying zeros (using technology) or algebraic methods when suitable factorizations are available, and showing end behavior.
		d. (+) Graph rational functions, identifying zeros and discontinuities (asymptotes/holes) using
		technology, and algebraic methods when suitable factorizations are available, and showing end behavior.
		e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and
		trigonometric functions, showing period, midline, and amplitude.
		F-IF.9. Compare properties of two functions each represented in a different way (algebraically,
		graphically, numerically, in tables, or by verbal descriptions). For example, given a graph of
		one quadratic function and an algebraic expression for another, say which has the larger
		maximum.
Function Standards (F-	Build a function that models a relationship	F-BF.1. Write a function that describes a relationship between two quantities.*
BF)	between two quantities.	a. Determine an explicit expression, a recursive process, or steps for calculation from a
		context.
		b. Combine standard function types using arithmetic operations. For example, build a function
		that models the temperature of a cooling body by adding a constant function to a decaying
I		exponential, and relate these functions to the model.
		c. (+) Compose functions. For example, if $T(y)$ is the temperature in the atmosphere as a
		function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $T(h(t))$
		is the temperature at the location of the weather balloon as a function of time.
Functions Standards (F- LE)	Construct and compare linear, quadratic, and exponential models and solve problems.	F-LE.1. Distinguish between situations that can be modeled with linear functions and with exponential functions.
		a. Show that linear functions grow by equal differences over equal intervals, and that
		exponential functions grow by equal factors over equal intervals.
		b. Recognize situations in which one quantity changes at a constant rate per unit interval
		relative to another.
		c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit
		interval relative to another.
		F-LE.2. Construct linear and exponential functions, including arithmetic and geometric
		sequences, given a graph, a description of a relationship,
		or input-output table of values.
	Interpret expressions for functions in terms of the	F-LE.5. Interpret the parameters in a linear or exponential function in terms of a context.
	situation they model.	

Mathematical Domain	Cluster	Standard
Geometry Standards	Explain volume formulas and use them to solve	G-GMD.3. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.
(G-GMD)	problems.	For example: Solve problems requiring determination of a dimension not given.*
Geometry Standards	Apply geometric concepts in modeling situations.	G-MG.1. Use geometric shapes, their measures, and their properties to describe objects (e.g.,
(G-MG)		modeling a tree trunk or a human torso as a cylinder).*
		G-MG.2. Apply concepts of density based on area and volume in modeling situations (e.g.,
		persons per square mile, BTUs per cubic foot).*
		G-MG.3. Apply geometric methods to solve design problems (e.g., designing an object or
		structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*
Statistics and	Summarize, represent, and interpret data on a	S-ID.1. Represent data with plots on the real number line (dot plots, histograms, and box
Probability Standards	single count or measurement variable.	plots).
(S-SID)		
		S-ID.2. Use statistics appropriate to the shape of the data distribution to compare center
		(median, mean) and spread (interquartile range, standard deviation) of two or more different
		data sets.
	Summarize, represent, and interpret data on two	S-ID.6. Represent data on two quantitative variables on a scatter plot, and describe how the
	categorical and quantitative variables.	variables are related.
		a. Fit a function to the data; use functions fitted to data to solve problems in the context of
		the data. Use given functions or choose a function suggested by the context. Emphasize linear,
		quadratic, and exponential models.
		b. Informally assess the fit of a function by plotting and analyzing residuals. For example:
		Describe solutions to problems that require interpolation and extrapolation.
		c. Fit a linear function for a scatter plot that suggests a linear association.
	Interpret linear models.	S-ID.7. Interpret the slope (rate of change) and the intercept (constant term) of a linear model
		in the context of the data.