KENAI PENINSULA BOROUGH SCHOOL DISTRICT

148 North Binkley Street Soldotna, Alaska 99669-7553 Phone (907) 714-8888 Fax (907) 262-9132 www.kpbsd.k12.ak.us

SCHOOL BOARD COMMUNICATION						
Title:	K-12 Math Curriculum Adoption					
Date:	11/2/2012 Item Number: 11d.					
Administrator:	Doris Cannon, Director of Curriculum Level Conver Through Sean Dusek, Assistant Superintendent of Instruction Gan Dusk					
Attachments:	Attachments: K-12 Math Curriculum, 2012-13					
X Action Needed	For Discussion Information	Other:				
BACKGROUND INFORMATION						
The draft for the K-12 Math Curriculum was presented at a Board Worksession on October 15, 2012. Recommended changes have been incorporated in this final document. The additional high school math courses have been included.						

District Administration recommends approval of the revised K-12 math curriculum.

ADMINISTRATIVE RECOMMENDATION

K-12 Math Curriculum 2012-13

COMMITTEE MEMBERS

Angela Brown Brandon Young Breta Brown Christina Granger **Cindy Denny** Cynthia McKibben Dan Calhoun Dave Fischer Dave Michael Deanne Pearson Doris Cannon Jason Bickling Joseph Pazar Kim Johnson Lacey Wisniewski Laura Fellows Marty Anderson Michelle Fournier Ranada Hassemer **Renee Merkes** Scot Akers Scott Peek Sherry Matson Suzanne Goodwill Tim Whip **Troy Minogue**

Skyview High School Paul Banks Elementary Nikiski North Star Tustumena Elementary P.D. Homer Area Coach Mt. View Elementary Homer Middle School Kenai Middle School Tustumena Elementary **River City Academy Curriculum Director** Administrator-Seward **K-Beach Elementary Chapman School** Kenai Middle School Homer Middle School School Board Representative Razdolna School **Redoubt Elementary** Soldotna High School Homer High School Kenai Central High School Nikiski North Star Elementary Soldotna Middle School Administrator-Razdolna Soldotna High School

ELEMENTARY MATH (K-5)

Kindergarten Assessed Quarter 3

Mathematical Domain	Cluster	Standard	Assessed Quarter
Counting,		K.CC.3. Write numbers from 0 to 20. Represent a	1, 2, 3
Cardinality,		number of objects with a written numeral 0-20 (with	
Ordinality (CC)		0 representing a count of no objects).	
	Count to tell the	K.CC.4. Understand the relationship between	1, 2, 3
	number of objects	numbers and quantities; connect counting to	
		cardinality.	
		a. When counting objects, say the number names in	
		standard order, pairing each object with one and only	
		one number name and each number name with one	
		and only one object.	
		b. Understand that the last number name said tells	
		the number of objects counted. The number of	
		objects is the same regardless of their arrangement	
		or the order in which they were counted.	
		c. Understand that each successive number name	
		refers to a quantity that is one larger.	
		K.CC.5. Count to answer "how many?" questions	1, 2, 3
		about as many as 20 things arranged in a line, a	
		rectangular array or a circle, or as many as 10 things	
		in a scattered configuration; given a number from 1-	
		20, count out that many objects.	
<u>Measurement</u>	Describe and	K.MD.1. Describe measurable attributes of objects	1, 2, 3
and Data (MD)	compare measurable	(e.g., length or weight). Match measuring tools to	
	attributes.	attribute (e.g., ruler to length). Describe several	
		measureable attributes of a single object.	

Kindergarten Assessed Quarter 4

Mathematical	Cluster	Standard	Assessed
Domain			Quarter
<u>Counting,</u>	Know number names	K.CC.1. Count to 100 by ones and by tens.	1, 2, 3, 4
<u>Cardinality,</u>	and the count		
Ordinality (CC)	sequence		
		K.CC.2. Count forward beginning from a given	1, 2, 3, 4
		number within the known sequence.	
Number and	Work with numbers	K.NBT.1. Compose and decompose numbers from 11	1, 2, 3, 4
Operations in	11-19 to gain	to 19 into ten ones and some further ones (e.g., by	
<u>Base Ten (NBT)</u>	foundations for place	using objects or drawings) and record each	
	value	composition and decomposition by a drawing or	
		equation (e.g., 18 = 10 + 8); understand that these	
		numbers are composed of ten ones and one, two,	
		three, four, five, six, seven, eight or nine ones.	
Measurement		K.MD.5. Tell time to the hour using both analog and	1, 2, 3, 4
and Data (MD)		digital clocks.	
Operations and	Understand addition	K.OA.1. Represent addition and subtraction with	2, 3, 4
Algebraic	as putting together &	objects, fingers, mental images, drawings, sounds	, ,
Thinking (OA)	adding to, &	(e.g., claps) acting out situations, verbal explanations,	
<u></u>	understand	expressions, or equations.	
	subtraction as taking		
	apart and taking		
	from		
		K.OA.2. Add or subtract whole numbers to 10 (e.g., by	2, 3, 4
		using objects or drawings to solve word problems).	
Geometry (G)		K.G.3. Identify shapes as two-dimensional (flat) or	2, 3, 4
<i>, 、 ,</i>		three-dimensional (solid).	
	Analyze, compare,	K.G.4. Analyze and compare two- and three-	2, 3, 4
	create, and compose	dimensional shapes, in different sizes and	
	shapes	orientations, using informal language to describe	
		their similarities, differences, parts (e.g., number of	
		sides and vertices), and other attributes (e.g., having	
		sides of equal lengths).	
		K.G.5. Build shapes (e.g., using sticks and clay) and	2, 3, 4
		draw shapes.	_, _, .
		K.G.6. Put together two-dimensional shapes to form	2, 3, 4
		larger shapes (e.g., join two triangles with full sides	_, _, .
		touching to make a rectangle).	
Counting,		K.CC.7. Compare and order two numbers between 1	3, 4
<u>Cardinality</u> ,		and 10 presented as written numerals.	5, 7
		and to presented as written numerals.	
Operations and		K OA 3. Decompose numbers less than or equal to 10	3.4
			5, 7
-			
Ordinality (CC) Operations and Algebraic Thinking (OA)		K.OA.3. Decompose numbers less than or equal to 10 into pairs in more than one way (e.g., by using objects or drawings, and record each decomposition by a	3, 4

Mathematical Domain	Cluster	Standard	Assessed Quarter
		drawing or equation). For example, 5 = 2 + 3 and 5 = 4 + 1.	
		K.OA.4. For any number from 1-4, find the number that makes 5 when added to the given number and, for any number from 1-9, find the number that makes 10 when added to the given	3, 4
		Number (e.g. by using objects, drawings, or 10 frames) and record the answer with a drawing or equation.	
		K.OA.5. Fluently add and subtract numbers up to 5.	3, 4
Measurement and Data (MD)		K.MD.6. Identify coins by name.	3, 4

Mathematical	Cluster	Standard	Assessed
Domain			Quarter
Operations and	Identify and continue	1.OA.9. Identify, continue and label patterns (e.g.,	1
<u>Algebraic</u>	patterns	aabb, abab). Create patterns using number, shape,	
Thinking (OA)		size, rhythm or color.	
<u>Measurement</u>	Measure lengths	1.MD.1. Measure and compare three objects using	1
and Data (MD)	indirectly and be	standard or non-standard units.	
	iterating length units		
Measurement		1.MD.2. Express the length of an object as a whole	1
and Data (MD)		number of length units, by laying multiple copies of a	
		shorter object (the length unit) end to end;	
		understand that the length measurement of an	
		object is the number of same-size length units that	
		span it with no gaps or overlaps.	

Mathematical Domain	Cluster	Standard	Assessed Quarter
<u>Counting,</u> <u>Cardinality,</u> <u>Ordinality (CC)</u>	Know ordinal names and counting flexibility	1.CC.1. Skip count by 2s and 5s.	1, 2
		1.CC.2. Use ordinal numbers correctly when identifying object position (e.g., first, second, third, etc.).	1, 2
		1.CC.3. Order numbers from 1-100. Demonstrate ability in counting forward and backward.	1, 2
	Count to tell the number of objects	1.CC.4. Count a large quantity of objects by grouping into 10s and counting by 10s and 1s to find the quantity.	1, 2
	Compare numbers	1.CC.5. Use the symbols for greater than, less than or equal to when comparing two numbers or groups of objects.	1, 2
		1.CC.6. Estimate how many and how much in a given set to 20 and then verify estimate by counting.	2
<u>Operations and</u> <u>Algebraic</u> <u>Thinking (OA)</u>	Understand and apply properties of operations and the relationship between addition and subtraction	1.OA.3. Apply properties of operations as strategies to add and subtract. (Students need not know the name of the property.) For example: If $8 + 3 = 11$ is known, then 3 + 8 = 11 is also known (Commutative property of addition). To add $2 + 6 + 4$, the second two numbers can be added to make a ten, so $2 + 6 + 4 = 2 + 10 = 12$ (Associative property of addition). Demonstrate that when adding zero to any number, the quantity does not change (Identity property of addition).	2
	Add and subtract using numbers up to 20	1.OA.5. Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).	2
	Work with addition and subtraction equations	1.OA.7. Understand the meaning of the equal sign (e.g., read equal sign as "same as") and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? $6 = 6$, $7 = 8 - 1$, $5 + 2 = 2 + 5$, $4 + 1 = 5 + 2$)	2
		1.OA.8. Determine the unknown whole number in an addition or subtraction equation. For example, determine the unknown number that makes the equation true in each of the equations $8 + ? = 11, 6 + 6 = ?, 5 = ? - 3$.	2

Mathematical Domain	Cluster	Standard	Assessed Quarter
<u>Operations and</u> <u>Algebraic</u> <u>Thinking (OA)</u>	Represent and solve problems involving addition and subtraction	1.OA.1. Use addition and subtraction strategies to solve word problems (using numbers up to 20), involving situations of adding to, taking from, putting together, taking apart and comparing, with unknowns in all positions, using a number line (e.g., by using objects, drawings and equations). Record and explain using equation symbols and a symbol for the unknown number to represent the problem.	2, 3
		1.OA.2. Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20 (e.g., by using objects, drawings and equations). Record and explain using equation symbols and a symbol for the unknown number to represent the problem.	2, 3
		1.OA.4. Understand subtraction as an unknown- addend problem. <i>For example, subtract 10 - 8 by</i> <i>finding the number that makes 10 when added to 8</i>	2, 3
	Add and subtract using numbers up to 20.	 1.OA.6. Add and subtract using numbers up to 20, demonstrating fluency for addition and subtraction up to 10. Use strategies such as •counting on •making ten (8 + 6 = 8 + 2 + 4 = 10 + 4 = 14) •decomposing a number leading to a ten (13 - 4 = 13 - 3 - 1 = 10 - 1 = 9) •using the relationship between addition and subtraction, such as fact families, (8 + 4 = 12 and 12 - 8 = 4) •creating equivalent but easier or known sums (e.g., adding 6 + 7 by creating the known equivalent 6 + 6 + 1 = 12 + 1 = 13). 	2, 3
<u>Number and</u> <u>Operation in</u> <u>Base Ten (NBT)</u>	Understand place value	 1.NBT.2. Model and identify place value positions of two digit numbers. Include: a. 10 can be thought of as a bundle of ten ones, called a "ten". b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight or nine ones. c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90, refer to one, two, three, four, five, six, seven, eight or nine tens (and 0 ones). 	2,3
		1.NBT.3. Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols >, =, <.	2, 3

Mathematical	Cluster	Standard	Assessed
Domain			Quarter
<u>Number and</u> <u>Operation in</u> <u>Base Ten (NBT)</u>	Extend the counting sequence	1.NBT.1. Count to 120. In this range, read, write objects with a written numeral.	1, 2, 3
Measurement	Work with time and	1.MD.3. Tell and write time in half hours using both	1, 2, 3
and Data (MD)	money	analog and digital clocks.	
		1.MD.4. Read a calendar distinguishing yesterday,	1, 2, 3
		today and tomorrow. Read and write a date.	
		1.MD.5. Recognize and read money symbols including	3
		\$ and ¢.	

<u>Mathematical</u> Domain	Cluster	Standard	Assessed Quarter
Number and Operation in Base Ten (NBT)	Use place value understanding and properties of operations to add and subtract.	1.NBT.5. Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.	3, 4
		 1.NBT.6. Subtract multiples of 10 up to 100. Use: concrete models or drawings strategies based on place value properties of operations and/or the relationship between addition and subtraction Relate the strategy to a written method and explain the reasoning used. 	3, 4
Measurement and Data (MD)	Work with time and money.	1.MD.6. Identify values of coins (e.g., nickel = 5 cents, quarter = 25 cents). Identify equivalent values of coins up to \$1 (e.g., 5 pennies = 1 nickel, 5 nickels = 1 quarter).	3, 4
	Represent and interpret data	1.MD. 7. Organize, represent and interpret data with up to three categories. Ask and answer comparison and quantity questions about the data.	3, 4
<u>Geometry (G)</u>	Reason with shapes and their attributes	1.G.1. Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non- defining attributes. Identify shapes that have non- defining attribute (e.g., color, orientation, overall size). Build and draw shapes given specified attributes.	4
<u>Geometry (G)</u>		1.G.2. Compose (put together) two-dimensional or three-dimensional shapes to create a larger, composite shape, and compose new shapes from the composite shape.	4
		1.G.3. Partition circles and rectangles into two and four equal shares. Describe the shares using the words, <i>halves, fourths</i> , and <i>quarters</i> and phrases <i>half</i> <i>of, fourth of</i> and <i>quarter of</i> . Describe the whole as two of or four of the shares. Understand for these examples that decomposing (break apart) into more equal shares creates smaller shares.	4

<u>Mathematical</u> Domain	Cluster	Standard	Assessed Quarter
Number and Operation in Base Ten (NBT)	Use place value understanding and properties of operations to add and subtract.	1.NBT.5. Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.	3, 4
		 1.NBT.6. Subtract multiples of 10 up to 100. Use: concrete models or drawings strategies based on place value properties of operations and/or the relationship between addition and subtraction Relate the strategy to a written method and explain the reasoning used. 	3, 4
Measurement and Data (MD)	Work with time and money.	1.MD.6. Identify values of coins (e.g., nickel = 5 cents, quarter = 25 cents). Identify equivalent values of coins up to \$1 (e.g., 5 pennies = 1 nickel, 5 nickels = 1 quarter).	3, 4
	Represent and interpret data	1.MD. 7. Organize, represent and interpret data with up to three categories. Ask and answer comparison and quantity questions about the data.	3, 4
<u>Geometry (G)</u>	Reason with shapes and their attributes	1.G.1. Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes. Identify shapes that have non-defining attribute (e.g., color, orientation, overall size). Build and draw shapes given specified attributes.	4
<u>Geometry (G)</u>		1.G.2. Compose (put together) two- dimensional or three-dimensional shapes to create a larger, composite shape, and compose new shapes from the composite shape.	4
		1.G.3. Partition circles and rectangles into two and four equal shares. Describe the shares using the words, <i>halves, fourths</i> , and <i>quarters</i> and phrases <i>half of, fourth of</i> and <i>quarter of</i> . Describe the whole as two of or four of the shares. Understand for these examples that decomposing (break apart) into more equal shares creates smaller shares.	4

Second Grade Assessed Quarter 2

<u>Mathematical</u> Domain	Cluster	Standard	Assessed Quarter
Number and Operations in Base Ten (NBT)	Understand place value	 2.NBT.1. Model and identify place value positions of three digit numbers. Include: a. 100 can be thought of as a bundle of ten tenscalled a "hundred". b. The numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones). 	1, 2
		2.NBT.2. Count up to 1000, skip-count by 5s, 10s and 100s.	1,2
		2.NBT.3. Read, write, order up to 1000 using base-ten numerals, number names and expanded form.	1, 2
		2.NBT.4. Compare two three-digit numbers based on the meanings of the hundreds, tens and ones digits, using >, =, < symbols to record the results.	2

Second Grade Assessed Quarter 3

<u>Mathematical</u> <u>Domain</u>	Cluster	Standard	Assessed Quarter
<u>Measurement</u> and Data (MD)	Relate addition and subtraction to length	2.MD.5. Solve addition and subtraction word problems using numbers up to 100 involving length that are given in the same units (e.g., by using drawings of rulers). Write an equation with a symbol for the unknown to represent the problem.	2, 3
		2.MD.6. Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers 0, 1, 2,, and represent whole-number sums and differences within 100 on a number line diagram.	2, 3
	Work with time and money	2.MD.7. Tell and write time to the nearest five minutes using a.m. and p.m. from analog and digital clocks.	1, 2, 3
<u>Operations and</u> <u>Algebraic</u> <u>Thinking (OA)</u>	Represent and solve problems involving addition and subtraction	2.OA.1. Use addition and subtraction strategies to estimate, then solve one- and two step word problems (using numbers up to 100) involving situations of adding to, taking from, putting together, taking apart and comparing, with unknowns in all positions (e.g., by using objects, drawings and equations). Record and explain using equation symbols and a symbol for the unknown number to represent the problem.	1, 2, 3
Number and Operations in Base Ten (NBT)	Use place value understanding and properties of operations to add and subtract	 2.NBT.5. Fluently add and subtract using numbers up to 100. Use: *Strategies based on place value * properties of operations * and/or the relationship between addition and subtraction 	2,3
		2.NBT.8. Mentally add 10 or 100 to a given number 100-900 and mentally subtract 10 or 100 from a given number	2,3

Second Grade Assessed Quarter 4

Mathematical Domain	Cluster	Standard	Assessed Quarter
Number and Operations in Base Ten (NBT)		2.NBT.6. Add up to four two-digit numbers using strategies based on place value and properties of operations.	3,4
		 2.NBT.7. Add and subtract using numbers up to 1000. Use: *concrete models or drawings and strategies based on place value *properties of operations *and/or relationship between addition and subtraction. Relate the strategy to a written method and explain the reasoning used. Demonstrate in adding or subtracting three digit numbers, hundreds and hundreds are added or subtracted, tens and tens are added or subtracted, ones and ones are added or subtracted and sometimes it is necessary to compose a ten from ten ones or a hundred from ten tens. 	3, 4
		2.NBT.9. Explain or illustrate the processes of addition or subtraction and their relationship using place value and the properties of operations.	2, 3, 4
<u>Operations and</u> <u>Algebraic</u> <u>Thinking (OA)</u>		2OA.4. Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns. Write an equation to express the total as repeate addition (e.g., array of 4 by 5 would be $5 + 5 + 5 + 5 = 20$).	4
<u>Measurement</u> and Data (MD)		2.MD.8. Solve word problems involving dollar bills and coins using the \$ and ¢ symbols appropriately.	2, 3, 4
	Represent and interpret data	2.MD.9. Collect, record, interpret, represent, and describe data in a table, graph or line plot.	3, 4
		2.MD.10. Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart and compare problems using information presented in a bar graph.	3, 4
<u>Geometry (G)</u>	Reason with shapes and their attributes	2.G.1. Identify and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces compared visually, not by measuring. Identify triangles, quadrilaterals, pentagons, hexagons and cubes.	4
		2.G.2. Partition a rectangle into rows and columns of same-size squares and count to find the total number	4

of them.	
2.G.3. Partition circles and rectangles into shares,	4
describe the shares using the words halves, thirds,	
half of, a third of, etc., and describe the whole as two	
halves, three thirds, four fourths. Recognize that	
equal shares of identical wholes need not have the	
same shape.	

Mathematical	Cluster	Standard	Assessed
Domain			Quarter
Operations and	Represent and solve	3.OA.1. Interpret products of whole numbers (e.g.,	1
<u>Algebraic</u>	problems involving	interpret 5 × 7 as the total number of objects in 5	
<u>Thinking (OA)</u>	multiplication and	groups of 7 objects each). For example, show objects	
	division	in rectangular arrays or describe a context in which a	
		total number of objects can be expressed as 5×7 .	
		3.OA.2. Interpret whole-number quotients of whole	1
		numbers (e.g., interpret 56 ÷ 8 as the number of	
		objects in each share when 56 objects are partitioned	
		equally into 8 shares, or as a number of shares when	
		56 objects are partitioned into equal shares of 8	
		objects each). For example, deconstruct rectangular	
		arrays or describe a context in which a number of	
		shares or a number of groups can be expressed as 56	
		÷ 8.	
Number and	Use place value	3.NBT.1. Use place value understanding to round	1
Operations in	understanding and	whole numbers to the nearest 10 or 100.	
Base Ten (NBT)	properties of		
	operations to		
	perform multi-digit		
	arithmetic		
		3.NBT.2. Use strategies and/or algorithms to fluently	1
		add and subtract with numbers up to 1000,	
		demonstrating understanding of place value,	
		properties of operations, and/or the relationship	
		between addition and subtraction.	
		3.MD.3. Select an appropriate unit of English, metric,	1
		or non-standard measurement to estimate the	
		length, time, weight, or temperature (L)	

Mathematical Domain	Cluster	Standard	Assessed Quarter
Operations and Algebraic Thinking (OA)		3.OA.9. Identify arithmetic patterns (including patterns in the addition table or multiplication table) and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.	1, 2
Number and Operations in Base Ten (NBT)		3.NBT.3. Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., 9 x 80, 10 x 60) using strategies based on place value and properties of operations.	1, 2
Measurement and data (MD)	Represent and interpret data	3.MD.4. Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.	1, 2
Number and Operations- Fractions (NF) (limited in this grade to fractions with denominators 2,3,4,6, 8)	Develop understanding of fractions as numbers	3.NF.1. Understand a fraction $1/b$ (e.g., $1/4$) as the quantity formed by 1 part when a whole is partitioned into b (e.g., 4) equal parts; understand a fraction a/b (e.g., $2/4$) as the quantity formed by a (e.g., 2) parts of size $1/b$. (e.g., $1/4$)	2
		3.NF.2. Understand a fraction as a number on the number line; represent fractions on a number line diagram. a. Represent a fraction $1/b$ (e.g., $1/4$) on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b (e.g., 4) equal parts. Recognize that each part has size $1/b$ (e.g., $1/4$) and that the endpoint of the part based at 0 locates the number $1/b$ (e.g., $1/4$) on the number line. b. Represent a fraction a/b (e.g., $2/8$) on a number line diagram or ruler by marking off a lengths $1/b$ (e.g., $1/8$) from 0. Recognize that the resulting interval has size a/b (e.g., $2/8$) and that its endpoint locates the number a/b (e.g., $2/8$) on the number line.	2
		3.MD.5. Measure and record lengths using rulers marked with halves and fourths of an inch. Make a line plot with the data, where the horizontal scale is	2

Mathematical Domain	Cluster	Standard	Assessed Quarter
		marked off in appropriate units—whole numbers, halves, or quarters.	
<u>Geometry (G)</u>	Reason with shapes and their attributes	3.G.1. Categorize shapes by different attribute classifications and recognize that shared attributes can define a larger category. Generalize to create examples or nonexamples.	2
		3.G.2. Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as 1/4 of the area of the shape.	2

Mathematical Domain	Cluster	Standard	Assessed Quarter
<u>Operations and</u> <u>Algebraic</u> <u>Thinking (OA)</u>	Represent and solve problems involving multiplication and division	3.OA.3. Use multiplication and division numbers up to 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	1, 2, 3
		3.OA.4. Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ? = 48, 5 = ? \div 3, 6 \times 6 = ?$	1, 2, 3
	Understand properties of multiplication and the relationship between multiplication and division	3.OA.5. Make, test, support, draw conclusions and justify conjectures about properties of operations as strategies to multiply and divide. (Students need not use formal terms for these properties.) *Commutative property of multiplication: If $6 \times 4 = 24$ is known, then $4 \times 6 = 24$ is also known. *Associative property of multiplication: $3 \times 5 \times 2$ can be found by $3 \times 5 = 15$, then $15 \times 2 = 30$, or by $5 \times 2 =$ 10, then $3 \times 10 = 30$. *Distributive property: Knowing that $8 \times 5 = 40$ and $8 \times 2 = 16$, one can find 8×7 as $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 = 56$. *Inverse property (relationship) of multiplication and division.	1, 2, 3
<u>Number and</u> <u>Operations-</u> <u>Fractions (NF)</u> (limited in this grade to fractions with denominators 2,3,4,6, 8)		 3.NF.3. Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. a. Understand two fractions as equivalent if they are the same size (modeled) or the same point on a number line. b. Recognize and generate simple equivalent fractions (e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are equivalent (e.g., by using a visual fraction model). c. Express and model whole numbers as fractions, and recognize and construct fractions that are equivalent to whole numbers. <i>For example: Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram.</i> d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions 	2, 3

Mathematical Domain	Cluster	Standard	Assessed Quarter
		refer to the same whole. Record the results of	
		comparisons with the symbols >, =, or <, and justify	
		the conclusions (e.g., by using a visual fraction	
		model).	
	Geometric	3.MD.7. Recognize area as an attribute of plane	3
	measurement:	figures and understand concepts of area	
	understand concepts	measurement.	
	of area and relate	a. A square with side length 1 unit is said to have	
	area to multiplication	"one square unit" and can be used to measure area.	
	and to addition	b. Demonstrate that a plane figure which can be	
		covered without gaps or overlaps by <i>n</i> (e.g., 6) unit	
		squares is said to have an area of <i>n</i> (e.g., 6) square	
		units.	
		3.MD.8. Measure areas by tiling with unit	3
		squares (square centimeters, square meters, square	5
		inches, square feet, and improvised units).	
		3.MD.9. Relate area to the operations of	3
		multiplication and addition.	5
		a. Find the area of a rectangle with whole number	
		side lengths by tiling it, and show that the area is the	
		same as would be found by multiplying the side	
		lengths. For example, after tiling rectangles, develop	
		a rule for finding the area of any rectangle.	
		b. Multiply side lengths to find areas of	
		rectangles with whole number side lengths in the	
		context of solving real world and mathematical	
		problems, and represent wholenumber products as	
		rectangular areas in mathematical reasoning.	
		c. Use area models (rectangular arrays) to represent	
		the distributive property in mathematical reasoning.	
		Use tiling to show in a concrete case that the area of	
		a rectangle with whole-number side lengths a and b +	
		c is the sum of $a \times b$ and $a \times c$.	
		d. Recognize area as additive. Find areas of rectilinear	
		figures by decomposing them into non-overlapping	
		rectangles and adding the areas of the non	
		overlapping parts, applying this technique to solve	
		real world problems. For example, the area of a 7 by	
		8 rectangle can be determined by decomposing it into	
	Coomotric	a 7 by 3 rectangle and a 7 by 5 rectangle.	3
	Geometric	3.MD.9. Relate area to the operations of multiplication and addition	5
	measurement:	multiplication and addition.	
	recognize perimeter	a. Find the area of a rectangle with whole number	
	as an attribute of	side lengths by tiling it, and show that the area is the	
	plane figures and	same as would be found by multiplying the side	
	distinguish between	lengths. For example, after tiling rectangles, develop	
	linear and area	a rule for finding the area of any rectangle.	

Mathematical Domain	Cluster	Standard	Assessed Quarter
	measures	 b. Multiply side lengths to find areas of rectangles with whole number side lengths in the context of solving real world and mathematical problems, and represent whole number products as rectangular areas in mathematical reasoning. c. Use area models (rectangular arrays) to represent the distributive property in mathematical reasoning. Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths <i>a</i> and <i>b</i> + <i>c</i> is the sum of <i>a</i> × <i>b</i> and <i>a</i> × <i>c</i>. d. Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems. For example, the area of a 7 by 8 rectangle can be determined by decomposing it into a 7 by 3 rectangle and a 7 by 5 rectangle. 	

Mathematical Domain	Cluster	Standard	Assessed Quarter
Operations and Algebraic Thinking (OA)	Represent and solve problems involving multiplication and division	3.OA.6. Understand division as an unknown factor problem. <i>For example, find 32 ÷ 8 by finding the number that makes 32 when multiplied by 8.</i>	1, 2, 3, 4
	Multiply and divide up to 100	3.OA.7. Fluently multiply and divide numbers up to 100, using strategies such as the relationship between multiplication and division (e.g., knowing that 8 ×5 = 40, one knows 40 ÷ 5 = 8) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.	1, 2, 3, 4
Measurement and data (MD)		3.MD.6. Explain the classification of data from real- world problems shown in graphical representations. Use the terms minimum and maximum. (L)	1, 2, 3, 4
<u>Operations and</u> <u>Algebraic</u> <u>Thinking (OA)</u>	Solve problems involving the four operations, and identify and explain patterns in arithmetic	3.OA.8. Solve and create two-step word problems using any of the four operations. Represent these problems using equations with a symbol (box, circle, question mark) standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.	3, 4
Measurement and data (MD)	Solve problems involving measurement and estimation of intervals of time, liquid, volumes, and masses of objects	3.MD.1. Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes or hours (e.g., by representing the problem on a number line diagram or clock).	3, 4
		3.MD.2. Estimate and measure liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm3 and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve and create one-step word problems involving masses or volumes that are given in the same units (e.g., by using drawings, such as a beaker with a measurement scale, to represent the problem). (Excludes multiplicative comparison problems [problems involving notions of "times as much."])	3, 4

Mathematical Domain	Cluster	Standard	Assessed Quarter
Operations and Algebraic Thinking OA	Use the four operations with whole numbers to solve problems	4.OA.1. Interpret a multiplication equation as a comparison e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 groups of 7 and 7 groups of 5 (Commutative property). Represent verbal statements of multiplicative comparisons as multiplication equations.	1
		4.OA.2. Multiply or divide to solve word problems involving multiplicative comparison (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem or missing numbers in an array). Distinguish multiplicative comparison from additive comparison.	1
Number and Operations in Base Ten NBT	Generalize place value understanding for multi-digit whole numbers	4.NBT.1. Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that 700 ÷ 70 = 10 by applying concepts of place value and division.	1
		4.NBT.3. Use place value understanding to round multi-digit whole numbers to any place using a variety of estimation methods; be able to describe, compare, and contrast solutions	1
	Use place value understanding and properties of operations to perform multi-digit arithmetic	4.NBT.4. Fluently add and subtract multi digit whole numbers using any algorithm. Verify the reasonableness of the results.	1
Number and Operations – Fractions (Limited in this grade to fractions with denominators 2,3,4,5,6,7,8,10,1 2,100)	Extend understanding of fraction equivalence and ordering.	4.NF.1. Explain why a fraction a/b is equivalent to a fraction $(n \times a)/(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.	1
	Understanding decimal notation for fractions, and compare decimal fractions	4.NF.5. Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. <i>For example, express 3/10 as 30/100, and add 3/10 + 4/100 = 34/100.</i>	1

Mathematical Domain	Cluster	Standard	Assessed Quarter
Operations and Algebraic Thinking OA	Use the four operations with whole numbers to solve problems	4.OA.1. Interpret a multiplication equation as a comparison e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 groups of 7 and 7 groups of 5 (Commutative property). Represent verbal statements of multiplicative comparisons as multiplication equations.	1
		4.OA.2. Multiply or divide to solve word problems involving multiplicative comparison (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem or missing numbers in an array). Distinguish multiplicative comparison from additive comparison.	1
Number and Operations in Base Ten NBT	Generalize place value understanding for multi-digit whole numbers	4.NBT.1. Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that 700 ÷ 70 = 10 by applying concepts of place value and division.	1
		4.NBT.3. Use place value understanding to round multi-digit whole numbers to any place using a variety of estimation methods; be able to describe, compare, and contrast solutions	1
	Use place value understanding and properties of operations to perform multi-digit arithmetic	4.NBT.4. Fluently add and subtract multi digit whole numbers using any algorithm. Verify the reasonableness of the results.	1
Number and Operations – Fractions (Limited in this grade to fractions with denominators 2,3,4,5,6,7,8,10,1 2,100)	Extend understanding of fraction equivalence and ordering.	4.NF.1. Explain why a fraction a/b is equivalent to a fraction $(n \times a)/(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.	1
	Understanding decimal notation for fractions, and compare decimal fractions	4.NF.5. Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. For example, express 3/10 as 30/100, and add 3/10 + 4/100 = 34/100.	1

Mathematical Domain	Cluster	Standard	Assessed Quarter
Operations in Base Ten NBT		4.NBT.5. Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two- digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	2, 3
		 4.NBT.6. Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or he relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. 	2, 3
		4.NF.4. Apply and extend previous understandings of multiplication to multiply a fraction by a whole number. a. Understand a fraction a/b as a multiple of $1/b$. For example, use a visual fraction model to represent $5/4$ as the product $5 \times (1/4)$, recording the conclusion by the equation $5/4 = 5 \times (1/4)$. b. Understand a multiple of a/b as a multiple of $1/b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times (2/5)$ as $6 \times (1/5)$, recognizing this product as $6/5$. (In general, $n \times (a/b) = (n \times a)/b$.) c. Solve word problems involving multiplication of a fraction by a whole number (e.g., by using visual fraction models and equations to represent the problem). Check for the reasonableness of the answer. For example, if each person at a party will eat $3/8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?	2, 3
Measurement and Data (MD)	Represent and interpret data	4.MD.5. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.	2, 3

Mathematical Domain	Cluster	Standard	Assessed Quarter
	Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers	4.NF.3. Understand a fraction a/b with $a > 1$ as a sum of fractions $1/b$. a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions (e.g., by using a visual fraction model). For example: $3/8 = 1/8 + 1/8 + 1/8$; $3/8 = 1/8$ + 2/8; $2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8$. c. Add and subtract mixed numbers with like denominators (e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction). d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators (e.g., by using visual fraction models and equations to represent the	1, 2 (a, b), 3 (c, d)
Measurement and Data MD		problem). 4.MD.3. Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.	3
<u>Geometry G</u>	Draw and identify lines and angles, and classify shapes by properties of their lines and angles	4.G.1. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular, parallel, and intersecting line segments. Identify these in two- dimensional (plane) figures.	3
		4.G.2. Classify two-dimensional (plane) figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.	3
		4.G.3. Recognize a line of symmetry for a two dimensional (plane) figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line symmetric figures and draw lines of symmetry.	3

Mathematical Domain	Cluster	Standard	Assessed Quarter
<u>Operations and</u> <u>Algebraic</u> <u>Thinking OA</u>		4.OA.3. Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.	1, 2, 3, 4
Measurement and Data MD		4.MD.2. Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.	1, 2, 3, 4
	Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit, and time	4.MD.1. Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. <i>For example,</i> <i>know that 1 ft is 12 times as long as 1 in. Express the</i> <i>length of a 4-ft snake as 48 in. Generate a conversion</i> <i>table for feet and inches listing the number pairs (1,</i> <i>12), (2, 24), (3, 36).</i>	3, 4
		4.MD.6. Explain the classification of data from real- world problems shown in graphical representations including the use of terms range and mode with a given set of data. (L)	3, 4
	Geometric measurement: understand concepts of angle and measure angles	 4.MD.7. Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand the following concepts of angle measurement: a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a "one degree angle," and can be used to measure angles. 	3, 4

Mathematical Domain	Cluster	Standard	Assessed Quarter
		b. An angle that turns through <i>n</i> one degree angles is said to have an angle measure of <i>n</i> degrees.	
		4.MD.8. Measure and draw angles in whole number degrees using a protractor. Estimate and sketch angles of specified measure.	3, 4
		4.MD.9. Recognize angle measure as additive. When an angle is divided into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems (e.g., by using an equation with a symbol for the unknown angle measure).	3, 4
		4.MD.4. Solve real-world problems involving elapsed time between U.S. time zones (including Alaska Standard time). (L)	4

Mathematical Domain	Cluster	Standard	Assessed Quarter
<u>Operations and</u> <u>Algebraic</u> <u>Thinking (OA)</u>	Write and interpret numerical expressions	5.OA.1. Use parentheses to construct numerical expressions, and evaluate numerical expressions with these symbols.	1
		5.OA.2. Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as 2 x (8 + 7). Recognizing that 3 x (18932 + 921) is three times as large as 18932 + 921, without having to calculate the indicated sum or product.	1
	Analyze patterns and relationships	5.OA.3. Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0, and given the rule "Add 6" and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.	1
<u>Number and</u> <u>Operations in</u> <u>Base Ten (NBT)</u>	Understand the place value system	5.NBT.1. Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left.	1
		5.NBT.2. Explain and extend the patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain and extend the patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10.	1

Mathematical	Cluster	Standard	Assessed
Domain			Quarter
Number and		5.NBT.3. Read, write, and compare decimals to	1, 2
Operations in		thousand ths.	
Base Ten (NBT)		a. Read and write decimals to thousandths using	
		base-ten numerals, number names, and expanded	
		form [e.g., 347.392 = 3 x 100 + 4 x 10 + 7 x 1 + 3	
		(1/10) + 9 (1/100) + 2 (1/1000)].	
		b. Compare two decimals to thousandths place based	
		on meanings of the digits in each place, using >, =,	
		and < symbols to record the results of comparisons.	
		5.NBT.4. Use place values understanding to round	1, 2
		decimals to any place.	
	Perform operations	5.NBT.5. Fluently multiply multi-digit whole numbers	2
	with multi-digit	using a standard algorithm.	
	whole numbers and		
	with decimals to		
	hundredths		

Mathematical Domain	Cluster	Standard	Assessed Quarter
<u>Number and</u> <u>Operations in</u> <u>Base Ten (NBT)</u>		5.NBT.6. Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, number lines, real life situations, and/or area models.	2, 3
Number and Operations – Fractions (NF)	Use equivalent fractions as a strategy to add and subtract fractions	5.NF.1. Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2/3 + 5/4 =$ 8/12 + 15/12 = 23/12. (In general, $a/b + c/d = (ad + bc)/bd$.)	2, 3
		5.NF.2. Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators (e.g., by using visual fraction models or equations to represent the problem). Use benchmark fractions and number sense of fractions to estimate mentally and check the reasonableness of answers. For example, recognize an incorrect result $2/5 + 1/2 = 3/7$, by observing that $3/7 < 1/2$.	2, 3
	Apply and extend previous understandings of multiplication and division to multiply and divide fractions	5.NF.3. Interpret a fraction as division of the numerator by the denominator $(a/b = a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers (e.g., by using visual fraction models or equations to represent the problem). For example, interpret 3/4 as the result of dividing 3 by 4, noting that $\frac{3}{4}$ multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50-pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?	2, 3
		5.NF.4. Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.	2, 3

Mathematical Domain	Cluster	Standard	Assessed Quarter
		a. Interpret the product $(a/b) \times q$ as a parts of a	
		partition of q into b equal parts; equivalently, as the	
		result of a sequence of operations $a \times q \div b$. For	
		example, use a visual fraction model to show $(2/3) \times 4$	
		= 8/3, and create a story context for this equation. Do	
		the same with $(2/3) \times (4/5) = 8/15$. (In general, $(a/b) \times$	
		(c/d) = ac/bd.	
		b. Find the area of a rectangle with fractional side	
		lengths by tiling it with unit squares of the	
		appropriate unit fraction side lengths, and show that	
		the area is the same as would be found by multiplying	
		the side lengths. Multiply fractional side lengths to	
		find areas of rectangles, and represent fraction	
		products as rectangular areas.	
		5.NF.5 Interpret multiplication as scaling	2, 3
		(resizing), by:	
		a. Comparing the size of a product to the size of one	
		factor on the basis of the size of the other factor,	
		without performing the indicated multiplication.	
		b. Explaining why multiplying a given number by a	
		fraction greater than 1 results in a product greater	
		than the given number (recognizing multiplication by	
		whole numbers greater than 1 as a familiar case);	
		explaining why multiplying a given number by a	
		fraction less than 1 results in a product smaller than	
		the given number; and relating the principle of	
		fraction equivalence $a/b = (n \times a)/(n \times b)$ to the effect	
		of multiplying a/b by 1. (Division of a fraction by a	
		fraction is not a requirement at this grade.)	
		5.NF.6. Solve real world problems involving	2, 3
		multiplication of fractions and mixed numbers (e.g.,	2, 5
		by using visual fraction models or equations to	
		represent the problem).	2.2
		5.NF.7. Apply and extend previous	2, 3
		understandings of division to divide unit fractions by	
		whole numbers and whole numbers by unit fractions.	
		a. Interpret division of a unit fraction by a nonzero	
		whole number, and compute such quotients. For	
		example, create a story context for $(1/3) \div 4$, and use	
		a visual fraction model to show the quotient. Use the	
		relationship between multiplication and division to	
		explain that $(1/3) \div 4 = 1/12$ because $(1/12) \times 4 = 1/3$.	
		b. Interpret division of a whole number by a unit	
		fraction, and compute such quotients. For example,	
		create a story context for $4 \div (1/5)$, and use a visual	
		fraction model to show the quotient. Use the	
		relationship between multiplication and division to	
		Γ	

Mathematical	Cluster	Standard	Assessed
Domain			Quarter
		c. Solve real world problems involving division of unit	
		fractions by non-zero whole numbers and division of	
		whole numbers by unit fractions (e.g., by using visual	
		fraction models and equations to represent the	
		problem). For example, how much chocolate will each	
		person get if 3 people share 1/2 lb of chocolate	
		equally? How many 1/3-cup servings are in 2 cups of	
		raisins?	
<u>Measurement</u>	Represent and	5.MD.3. Make a line plot to display a data set of	2, 3
and Data MD	interpret data	measurements in fractions of a unit (1/2, 1/4, 1/8).	
		Solve problems involving information presented in	
		line plots. For example, given different measurements	
		of liquid in identical beakers, find the amount of liquid	
		each beaker would contain if the total amount in all	
		the beakers were redistributed equally.	
Geometry (G)	Graph points on the	5.G.1. Use a pair of perpendicular number lines,	3
<u></u>	coordinate plane to	called axes, to define a coordinate system, with the	
	solve real-world and	intersection of the lines (the origin) arranged to	
	mathematical	coincide with the 0 on each line and a given point in	
	problems	the plane located by using an ordered pair of	
	problems	numbers, called its coordinates. Understand that the	
		first number indicates how far to travel from the	
		origin in the direction of one axis, and the second	
		number indicates how far to travel in the direction of	
		the second axis, with the convention that the names	
		of the two axes and the coordinates correspond (e.g.,	
		<i>x</i> -axis and <i>x</i> -coordinate, <i>y</i> -axis and <i>y</i> -coordinate).	2
		5.G.2. Represent real world and mathematical	3
		problems by graphing points in the first quadrant of	
		the coordinate plane, and interpret coordinate values	
		of points in the context of the situation.	
	Classify two-	5.G.3. Understand that attributes belonging to a	3
	dimensional figures	category of two dimensional (plane) figures also	
	into categories based	belong to all subcategories of that category. For	
	on their properties.	example, all rectangles have four right angles and	
		squares are rectangles, so all squares have four right	
		angles.	
		5.G.4. Classify two-dimensional (plane)	3
		figures in a hierarchy based on attributes and	
		properties.	

Mathematical Domain	Cluster	Standard	Assessed Quarter
Number and Operations in Base Ten (NBT)		5.NBT.7. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between the operations. Relate the strategy to a written method and explain their reasoning in getting their answers.	2, 3, 4
<u>Measurement</u> and Data (MD)	Convert like measurement units within a given measurement system. Solve problems involving time	5.MD.1. Identify, estimate measure, and convert equivalent measures within systems English length (inches, feet, yards, miles) weight (ounces, pounds, tons) volume (fluid ounces, cups, pints, quarts, gallons) temperature (Fahrenheit) Metric length (millimeters, centimeters, meters, kilometers) volume (milliliters, liters), temperature (Celsius), (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems using appropriate tools.	3, 4
		5.MD.4. Explain the classification of data from real- world problems shown in graphical representations including the use of terms mean and median with a given set of data. (L)	3, 4
	Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition	 5.MD.5. Recognize volume as an attribute of solid figures and understand concepts of volume measurement. a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. b. A solid figure that can be packed without gaps or overlaps using <i>n</i> unit cubes is said to have a volume of <i>n</i> cubic units. 	3, 4
		5.MD.6. Estimate and measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and non- standard units.	3, 4
		5.MD.7. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume. a. Estimate and find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Demonstrate the associative property of multiplication by using the product of three whole numbers to find volumes (length x width x height).	3, 4

Mathematical Domain	Cluster	Standard	Assessed Quarter
		 b. Apply the formulas V = I × w × h and V = b × h for rectangular prisms to find volumes of right rectangular prisms with whole number edge lengths in the context of solving real world and mathematical problems. c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems. 	
		5.MD.2. Solve real-world problems involving elapsed time between world time zones. (L)	4

MIDDLE SCHOOL MATH (6-8)

Mathematical Domain	Cluster	Standard	Assessed Quarter
The Number System NS	Apply and extend previous understandings of multiplication and division to divide fractions by fractions	6.NS.1. Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions (e.g., by using visual fraction models and equations to represent the problem). For example, create a story context for $(2/3) \div (3/4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2/3) \div (3/4) = 8/9$ because $3/4$ of $8/9$ is $2/3$. (In general $(a/b) \div (c/d) = ad/bc$.) How much chocolate will each person get if 3 people share $1/2$ lb of chocolate equally? How many $3/4$ -cup servings are in $2/3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3/4$ mi and area $1/2$ square mi?	1
		6.NS.4. Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers 1–100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36 + 8$ as $4 (9 + 2)$.	1
Expressions and Equations EE	Apply and extend previous understandings of arithmetic to algebraic expressions	6.EE.1. Write and evaluate numerical expressions involving whole-number exponents. For example, multiply by powers of 10 and products of numbers using exponents. $(73 = 7 \cdot 7 \cdot 7)$	1
		6.EE.4. Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions y + y + y and 3y are equivalent because they name the same number regardless of which number y stands for.	1, 4

Mathematical Domain	Cluster	Standard	Assessed Quarter
Ratios and	Understand ratio	6.RP.1. Write and describe the relationship in real life	2
Proportional	concepts and use	context between two quantities using ratio language.	
Relationships	ratio reasoning to	For example, "The ratio of wings to beaks in the bird	
(RP)	solve problems	house at the zoo was 2:1, because for every 2 wings	
		there was 1 beak." "For every vote candidate A	
		received, candidate C received nearly three votes."	
		6.RP.2. Understand the concept of a unit rate (a/b)	2
		associated with a ratio <i>a</i> : <i>b</i> with $b \neq 0$, and use rate	
		language in the context of a ratio relationship) and	
		apply it to solve real world problems (e.g., unit	
		pricing, constant speed). For example, "This recipe	
		has a ratio of 3 cups of flour to 4 cups of sugar, so	
		there is ¾ cup of flour for each cup of sugar." "We	
		paid \$75 for 15 hamburgers, which is a rate of \$5 per	
		hamburger."	
The Number	Compute fluently	6.NS.2. Fluently multiply and divide multi digit whole	2
System (NS)	with multi-digit	numbers using the standard algorithm. Express the	
	numbers and find	remainder as a whole number, decimal, or simplified	
	common factors and	fraction; explain or justify your choice based on the	
	multiples	context of the problem.	
		6.NS.3. Fluently add, subtract, multiply, and divide	2
		multi-digit decimals using the standard algorithm for	
		each operation. Express the remainder as a	
		terminating decimal, or a repeating decimal, or	
		rounded to a designated place value.	
Geometry (G)		6.G.3. Draw polygons in the coordinate plane given	2
		coordinates for the vertices; determine the length of	
		a side joining the coordinates of vertices with the	
		same first or the same second coordinate. Apply	
		these techniques in the context of solving real-world	
		and mathematical problems.	
		6.G.4. Represent three-dimensional figures (e.g.,	3
		prisms) using nets made up of rectangles and	
		triangles, and use the nets to find the surface area of	
		these figures. Apply these techniques in the context	
		of solving real-world and mathematical problems.	

Mathematical Domain	Cluster	Standard	Assessed Quarter
Ratios and <u>Proportional</u> <u>Relationships</u> (RP)		 6.RP.3. Use ratio and rate reasoning to solve real-world and mathematical problems (e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations). a. Make tables of equivalent ratios relating quantities with whole number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios, and understand equivalencies. b. Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate how many lawns could be mowed in 35 hours? At what rate were lawns being mowed? c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole, given a part and the percent. d. Use ratio reasoning to convert measurement units between given measurement systems (e.g., convert kilometers to miles); manipulate and transform units presented be were tables and transform units presented be used to a part and the percent. 	2, 3
	Develop understanding of statistical variability	appropriately when multiplying or dividing quantities. 6.SP.1. Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.	2, 3
		6.SP.2. Understand that a set of data has a distribution that can be described by its center (mean, median, or mode), spread (range), and overall shape and can be used to answer a statistical question.	2, 3
Summarize and describe distributions		6.SP.3. Recognize that a measure of center (mean, median, or mode) for a numerical data set summarizes all of its values with a single number, while a measure of variation (range) describes how its values vary with a single number.	2, 3
	6.SP.4. Display numerical data in plots on a number line, including dot or line plots, histograms and box (box and whisker) plots.	2, 3	
		6.SP.5. Summarize numerical data sets in relation to their context, such as by:	2, 3

Mathematical Domain	Cluster	Standard	Assessed Quarter
Domain		a. Reporting the number of observations	Q
		(occurrences).	
		b. Describing the nature of the attribute under	
		investigation, including how it was measured and its	
		units of measurement.	
		c. Giving quantitative measures of center (median	
		and/or mean) and variability (interquartile range), as	
		well as describing any overall pattern and any outliers	
		with reference to the context in which the data were	
		gathered.	
		d. Relating the choice of measures of center and	
		variability to the shape of the data distribution and	
		the context in which the data were gathered.	
		6.SP.6. Analyze whether a game is mathematically	2, 3
		fair or unfair by explaining the probability of all	_, 5
		possible outcomes. (L)	
		6.SP.7. Solve or identify solutions to problems	2, 3
		involving possible combinations (e.g., if ice cream	2,3
		sundaes come in 3 flavors with 2 possible toppings,	
		how many different sundaes can be made using only	
		one flavor of ice cream with one topping?) (L)	
The Number	Apply and extend	6.NS.5 Understand that positive and negative	3
System (NS)	previous	numbers describe quantities having opposite	5
<u></u>	understandings of	directions or values (e.g., temperature above/below	
	numbers to the	zero, elevation above/below sea level, credits/debits,	
	system of rational	positive/negative electric charge); use positive and	
	numbers.	negative numbers to represent quantities in real	
		world contexts, explain the meaning of 0 in each	
		situation.	
		6.NS.6. Understand a rational number as a point on	3
		the number line. Extend number line diagrams and	U U
		coordinate axes familiar from previous grades to	
		represent points on the line and in the plane with	
		negative number coordinates.	
		a. Recognize opposite signs of numbers as indicating	
		locations on opposite sides of 0 on the number line;	
		Recognize that the opposite of the opposite of a	
		number is the number itself [e.g., $-(-3) = 3$] and that	
		0 is its own opposite.	
		b. Understand signs of numbers in ordered pairs as	
		indicating locations in quadrants of the coordinate	
		plane; recognize that when two ordered pairs differ	
		only by signs, the locations of the points are related	
		by reflections across one or both axes.	
		c. Find and position integers and other rational	
		numbers on a horizontal or vertical number line	
		diagram; find and position pairs of integers and other	

Mathematical Domain	Cluster	Standard	Assessed Quarter
		rational numbers on a coordinate plane.	
		6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	3
<u>Geometry (G)</u>		6.G.4. Represent three-dimensional figures (e.g., prisms) using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.	3

Mathematical Domain	Cluster	Standard	Assessed Quarter
Expressions and Equations (EE)		6.EE.4. Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions y + y + y and 3y are equivalent because they name the same number regardless of which number y stands for.	1, 4
<u>The Number</u> <u>System (NS)</u>		 6.NS.7. Understand ordering and absolute value of rational numbers. a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret -3 > -7 as a statement that -3 is located to the right of -7 on a number line oriented from left to right. b. Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write -3 oC > -7 oC to express the fact that -3 oC is warmer than -7 oC. c. Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write -30 = 30 to describe the size of the debt in dollars. d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollar represents a debt greater than 30 dollars. 	3, 4
<u>Geometry (G)</u> <u>Expressions and</u> Equations (EE)	Solve real-world and mathematical problems involving area, surface area, and volume	 6.G.1. Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing or decomposing into other polygons (e.g., rectangles and triangles). Apply these techniques in the context of solving real-world and mathematical problems. 6.EE.2. Write, read, and evaluate expressions in which letters stand for numbers. 	3, 4
		 a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5 - y. b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression 2 (8 + 7) as a product of two factors; 	

Mathematical Domain	Cluster	Standard	Assessed Quarter
		view (8 + 7) as both a single entity and a sum of two	
		terms.	
		c. Evaluate expressions and formulas. Include	
		formulas used in real-world problems. Perform	
		arithmetic operations, including those involving	
		whole number exponents, in the conventional order	
		with or without parentheses. (Order of Operations)	
		6.EE.3. Apply the properties of operations to	4
		generate equivalent expressions. Model (e.g.,	
		manipulatives, graph paper) and apply the	
		distributive, commutative, identity, and inverse	
		properties with integers and variables by writing	
		equivalent expressions. For example, apply the	
		distributive property to the expression $3(2 + x)$ to	
		produce the equivalent expression $6 + 3x$.	
	Reason about and	6.EE.5. Understand solving an equation or inequality	4
	solve one-variable	as a process of answering a question: which values	
	equations and	from a specified set, if any, make the equation or	
	inequalities.	inequality true? Use substitution to determine	
	inequanties.	whether a given number in a specified set makes an	
		equation or inequality true. For example: does 5	
		make $3x > 7$ true?	
		6.EE.6. Use variables to represent numbers and write	4
		expressions when solving a real world or	
		mathematical problem; understand that a variable	
		can represent an unknown number, or, depending on	
		the purpose at hand, any number in a specified set.	
		6.EE.7. Solve real-world and mathematical problems	4
		by writing and solving equations of the form $x + p = q$	
		and $px = q$ for cases in which p , q and x are all	
		nonnegative rational numbers.	
		6.EE.8. Write an inequality of the form $x > c$ or $x < c$ to	4
		represent a constraint or condition in a real-world or	4
		mathematical problem. Recognize that inequalities	
		of the form $x > c$ or $x < c$ have infinitely many	
		solutions; represent solutions of such inequalities on	
		number line diagrams.	
	Represent and	6.EE.9. Use variables to represent two	4
	analyze quantitative	quantities in a real-world problem that change in	4
	relationships	relationship to one another; write an equation to	
	between dependent	express one quantity, thought of as the dependent	
	•		
	and independent variables.	variable, in terms of the other quantity, thought of as	
		the independent variable. Analyze the relationship	
		between the dependent and independent variables	
		using graphs and tables, and relate these to the	tion
		equation. For example, in a problem involving motion	
		at constant speed, list and graph ordered pairs of	

Mathematical Domain	Cluster	Standard	Assessed Quarter
		distances and times, and write the equation d = 65t to represent the relationship between distance and time.	
<u>Geometry (G)</u>		6.G.2. Apply the standard formulas to find volumes of prisms. Use the attributes and properties (including shapes of bases) of prisms to identify, compare or describe three dimensional figures including prisms and cylinders.	4
		6.G.5. Identify, compare or describe attributes and properties of circles (radius, and diameter). (L)	4

Mathematical Domain	Cluster	Standard	Assessed Quarter
<u>The Number</u> <u>System (NS)</u>	Apply and extend previous understandings of multiplication and division to divide fractions by fractions	7.NS.1. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. Show that a number and its opposite have a sum of 0 (additive inverses). Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. b. Understand addition of rational numbers ($p + q$ as the number located a distance $ q $ from p , in the positive or negative direction depending on whether q is positive or negative). Interpret sums of rational numbers by describing real world contexts. c. Understand subtraction of rational numbers as adding the additive inverse, $p - q = p + (-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. d. Apply properties of operations as strategies to add	1
	Compute fluently with multi-digit numbers and find common factors and multiples	and subtract rational numbers. 7.NS.2. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers and use equivalent representations. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real world contexts. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p/q) = (-p)/q = p/(-q)$. Interpret quotients of rational numbers by describing real-world contexts. c. Apply and name properties of operations used as strategies to multiply and divide rational numbers. d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.	1

Mathematical Domain	Cluster	Standard	Assessed Quarter
		e. Convert between equivalent fractions, decimals, or percents.	
		7.NS.3. Solve real-world and mathematical problems involving the four operations with rational numbers. (Computations with rational numbers extend the rules for manipulating fractions to complex fractions.) <i>For example, use models, explanations, number lines,</i> <i>real life situations, describing or illustrating the effect</i> <i>of arithmetic operations on rational numbers</i> (fractions, decimals).	1

Mathematical Domain	Cluster	Standard	Assessed Quarter
Expressions and Equations (EE)	Apply and extend previous understandings of arithmetic to algebraic expressions	7.EE.1. Apply properties of operations as strategies to add, subtract, factor, expand and simplify linear expressions with rational coefficients.	2
		7.EE.2. Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, a + 0.05a = 1.05a means that "increase by 5%" is the same as "multiply by 1.05."	2
		7.EE.3. Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form and assess the reasonableness of answers using mental computation and estimation strategies. For example: If a woman making \$25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or \$2.50, for a new salary of \$27.50. If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.	2
		7.EE.4. Use variables to represent quantities in a real- world or mathematical problem, and construct multi- step equations and inequalities to solve problems by reasoning about the quantities. a. Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p , q , and r are specific rational numbers. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width? b. Solve word problems leading to inequalities of the form $px + q > r$ or $px + q < r$, where p , q , and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid \$50 per week plus \$3 per sale. This week you want your pay to be at least \$100. Write an inequality for the number of sales you need to make, and describe the solutions.	2

Mathematical Domain	Cluster	Standard	Assessed Quarter
Ratios and Proportional Relationships (RP)	Analyze proportional relationships and use them to solve real- world and mathematical	7.RP.1. Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks 1/2 mile in each 1/4 hour, compute the unit rate as the complex fraction 1/2/1/4 miles per hour, equivalently 2 miles per hour or apply a given scale factor to find missing dimensions of similar figures.	3
		7.RP.2. Recognize and represent proportional relationships between quantities. Make basic inferences or logical predictions from proportional relationships. a. Decide whether two quantities are in a proportional relationship (e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin). b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships in real world situations. c. Represent proportional relationships by equations and multiple representations such as tables, graphs, diagrams, sequences, and contextual situations. <i>For</i> <i>example, if total cost</i> <i>t is proportional to the number n of items</i> <i>purchased at a constant price p, the</i> <i>relationship between the total cost and the number of</i> <i>items can be expressed as t = pn</i> . d. Understand the concept of unit rate and show it on a coordinate plane. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate.	3
		7.RP.3. Use proportional relationships to solve multistep ratio and percent problems. <i>Examples:</i> <i>simple interest, tax, markups and markdowns,</i> <i>gratuities and commissions, fees, percent increase</i> <i>and decrease, percent error.</i>	3
<u>Geometry (G)</u>	Solve real-world and mathematical problems involving area, surface area, and volume	7.G.1. Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.	3

protractor, and with technology) geometric shapes including polygons and circles with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.7.G.3. Describe the two-dimensional figures, i.e., cross-section, that result from slicing three- dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.7.G.4. Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.	Mathematical Domain	Cluster	Standard	Assessed Quarter
protractor, and with technology) geometric shapes including polygons and circles with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.7.G.3. Describe the two-dimensional figures, i.e., cross-section, that result from slicing three- 				
protractor, and with technology) geometric shapes including polygons and circles with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.7.G.3. Describe the two-dimensional figures, i.e., cross-section, that result from slicing three- dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.7.G.4. Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.				
protractor, and with technology) geometric shapes including polygons and circles with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.7.G.3. Describe the two-dimensional figures, i.e., cross-section, that result from slicing three- dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.7.G.4. Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.				
including polygons and circles with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.7.G.3. Describe the two-dimensional figures, i.e., cross-section, that result from slicing three- dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.7.G.4. Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.				3
Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.7.G.3. Describe the two-dimensional figures, i.e., cross-section, that result from slicing three- dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.37.G.4. Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circufe.3				
of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.7.G.3. Describe the two-dimensional figures, i.e., cross-section, that result from slicing three- dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.7.G.4. Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.				
determine a unique triangle, more than one triangle, or no triangle.7.G.3. Describe the two-dimensional figures, i.e., cross-section, that result from slicing three- dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.7.G.4. Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.			5 5	
or no triangle.7.G.3. Describe the two-dimensional figures, i.e., cross-section, that result from slicing three- dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.7.G.4. Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.				
cross-section, that result from slicing three- dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.7.G.4. Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.				
dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.7.G.4. Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.			7.G.3. Describe the two-dimensional figures, i.e.,	3
rectangular prisms and right rectangular pyramids. 7.G.4. Know the formulas for the area and 3 circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle. a				
7.G.4. Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.				
circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.				
problems; give an informal derivation of the relationship between the circumference and area of a circle.				3
relationship between the circumference and area of a circle.				
circle.				
			•	
I I I I I I I I I I I I I I I I I I I				3
				3
complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple				
equations for an unknown angle in a figure.				

Mathematical Domain	Cluster	Standard	Assessed Quarter
Statistics andDeProbability (SP)ur	Develop understanding of statistical variability	7.SP.1. Understand that statistics can be used to gain information about a population by examining a reasonably sized sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.	4
		7.SP.2. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.	4
		7.SP.3. Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.	4
	Summarize and describe distributions	7.SP.4. Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.	4
		7.SP.5. Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	4

Mathematical Domain	Cluster	Standard	Assessed Quarter
		 7.SP.6. Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long run relative frequency, and predict the approximate relative frequency given the probability. <i>For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.</i> 	4
		 7.SP.7. Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. a. Design a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected. b. Design a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies? 	4

Mathematical Domain	Cluster	Standard	Assessed Quarter
The Number	Know that there are	8.NS.1. Classify real numbers as either rational (the	1
<u>System (NS)</u>	numbers that are not	ratio of two integers, a terminating decimal number,	
	rational, and	or a repeating decimal number) or irrational.	
	approximate them by		
	rational numbers		
		8.NS.2. Order real numbers, using approximations of	1
		irrational numbers, locating them on a number line.	
		For example, show that $\sqrt{2}$ is between 1 and 2, then	
		between 1.4 and 1.5, and explain how to continue on	
		to get better approximations.	
		8.NS.3. Identify or write the prime factorization of a	1
		number using exponents. (L)	
Expressions and	Work with radicals	8.EE.1. Apply the properties (product,	1
Equations (EE)	and integer	quotient, power, zero, negative exponents, and	
	exponents	rational exponents) of integer exponents to generate	
		equivalent numerical expressions. For example, 32 ×	
		3–5 = 3–3 = 1/33 = 1/27.	
		8.EE.2. Use square root and cube root symbols to	1
		represent solutions to equations of the form $x^2 = p$	
		and $x3 = p$, where p is a positive rational number.	
		Evaluate square roots of small perfect squares and	
		cube roots of small perfect cubes. Know that √2 is	
		irrational.	
		8.EE.3. Use numbers expressed in the form of a single	1
		digit times an integer power of 10 to estimate very	
		large or very small quantities, and to express how	
		many times as much one is than the other. For	
		example, estimate the population of the United States	
		as 3×108 and the population of the world as 7×109 ,	
		and determine that the world population is more than	
		20 times larger.	
		8.EE.4. Perform operations with numbers expressed	1
		in scientific notation, including problems where both	
		standard notation and scientific notation are used.	
		Use scientific notation and choose units of	
		appropriate size for measurements of very large or	
		very small quantities. Interpret scientific notation	
		that has been generated by technology.	

Mathematical Domain	Cluster	Standard	Assessed Quarter
Expressions and Equations (EE)	Understand the connections between proportional relationships, lines, and linear equations	8.EE.5. Graph linear equations such as y = mx + b, interpreting m as the slope or rate of change of the graph and b as the y intercept or starting value. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.	2
	Analyze and solve linear equations and pairs of simultaneous linear equations	8.EE.7. Solve linear equations in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x = a$, $a = a$, or $a = b$ results (where a and b are different numbers). b. Solve linear equations with rational coefficients, including equations whose solutions require expanding expressions using the distributive property and combining like terms.	2
		8.EE.8. Analyze and solve systems of linear equations. a. Show that the solution to a system of two linear equations in two variables is the intersection of the graphs of those equations because points of intersection satisfy both equations simultaneously. b. Solve systems of two linear equations in two variables and estimate solutions by graphing the equations. Simple cases may be done by inspection. For example, $3x + 2y = 5$ and $3x + 2y = 6$ have no solution because $3x + 2y$ cannot simultaneously be 5 and 6. c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.	2
Functions (F)	Define, evaluate, and compare functions.	8.F.1. Understand that a function is a rule that assigns to each input (the domain) exactly one output (the range). The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. For example, use the vertical line test to determine functions and non-	2

Mathematical Domain	Cluster	Standard	Assessed Quarter
		functions.	
		8.F.2. Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	2
		8.F.3. Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A = s2$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.	2
	Use functions to model relationships between quantities.	8.F.4. Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values	2
		8.F.5. Given a verbal description between two quantities, sketch a graph. Conversely, given a graph, describe a possible real-world example. <i>For example,</i> <i>graph the position of an accelerating car or tossing a</i> <i>ball in the air.</i>	2

Mathematical Domain	Cluster	Standard	Assessed Quarter
Geometry (G)	Understand	8.G.1. Through experimentation, verify the properties	3
<u>Geometry (O)</u>	congruence and	of rotations, reflections, and translations	J
	similarity using	(transformations) to figures on a coordinate plane).	
	physical models,	a. Lines are taken to lines, and line segments to line	
	transparencies, or	segments of the same length.	
	geometry software.	b. Angles are taken to angles of the same measure.	
	geometry sortware.	c. Parallel lines are taken to parallel lines	
		8.G.2. Demonstrate understanding of	3
		congruence by applying a sequence of	5
		translations, reflections, and rotations on two	
		dimensional figures. Given two congruent figures,	
		describe a sequence that exhibits the congruence	
		between them.	
		8.G.3. Describe the effect of dilations, translations,	3
		rotations, and reflections on two dimensional figures	5
		using coordinates	
		8.G.4. Demonstrate understanding of similarity, by	3
		applying a sequence of translations, reflections,	5
		rotations, and dilations on two-dimensional figures.	
		Describe a sequence that exhibits the similarity	
		between them.	
		8.G.5. Justify using informal arguments to	3
		establish facts about	0
		*the angle sum of triangles (sum of the interior	
		angles of a triangle is 180°),	
		*measures of exterior angles of triangles,	
		*angles created when parallel lines are cut be a	
		transversal (e.g., alternate interior angles), and	
		*angle-angle criterion for similarity of triangles.	
	Understand and	8.G.6. Explain the Pythagorean Theorem and its	3
	apply the	converse.	<u> </u>
	Pythagorean		
	Theorem.		
		8.G.7. Apply the Pythagorean Theorem to	3
		determine unknown side lengths in right	
		triangles in real-world and mathematical problems in	
		two and three dimensions.	
	1	8.G.8. Apply the Pythagorean Theorem to find the	3
		distance between two points in a coordinate system.	

Mathematical Domain	Cluster	Standard	Assessed Quarter
<u>Geometry (G)</u>	Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.	8.G.9. Identify and apply the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.	4
Statistics and Probability (SP)		8.SP.2. Explain why straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	4
		8.SP.3. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and y-intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height	4
		8.SP.4. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects and use relative frequencies to describe possible association between the two variables. For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?	4

HIGH SCHOOL MATH (9-12)

Mathematical Domain	Cluster	Standard	Assessed Quarter
Number and Quantity (N)	The Real Number System	N-RN.1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define 51/3 to be the cube root of 5 because we want $(51/3)3 = 5(1/3)3$ to hold, so $(51/3)3$ must equal 5.	1
		N-RN.2. Rewrite expressions involving radicals and rational exponents using the properties of exponents. <i>For example: Write equivalent</i> <i>representations that utilize both positive and negative</i> <i>exponents</i>	1
		N-RN.3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	1
	Seeing Structure in Expressions	 A-SSE.1. Interpret expressions that represent a quantity in terms of its context.* a. Interpret parts of an expression, such as terms, factors, and coefficients. b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1+r)n as the product of P and a factor not depending on P. 	1
		A-SSE.2. Use the structure of an expression to identify ways to rewrite it. For example, see $x4 - y4$ as $(x2)2 - (y2)2$, thus recognizing it as a difference of squares that can be factored as $(x2 - y2)(x2 + y2)$.	1
		A-SSE.3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* a. Factor a quadratic expression to reveal the zeros of the function it defines. For example, $x2 + 4x + 3 = (x + 3)(x + 1)$. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. For example, $x2 + 4x + 3 = (x + 2)2 - 1$. c. Use the properties of exponents to transform expressions for exponential functions. For example	1

Mathematical Domain	Cluster	Standard	Assessed Quarter
Domain		the expression 1 1Et can be rewritten as	Quarter
		the expression 1.15t can be rewritten as	
		$(1.151/12)12t \approx 1.01212t$ to reveal the approximate	
		equivalent monthly interest rate if the annual rate is 15%.	
	Arithmetic with	A-APR.1. Add, subtract, and multiply polynomials.	1
	Polynomials and	Understand that polynomials form a system similar to	
	Rational Expressions	the integers, namely, they are closed	
		under the operations of addition, subtraction, and	
		multiplication.	
		A-REI.3. Solve linear equations and inequalities in one	1
		variable, including equations with coefficients	
		represented by letters.	
		A-REI.5. Show that, given a system of two equations	1
		in two variables, replacing one equation by the sum	
		of that equation and a multiple of the other produces	
		a system with the same solutions	
		A-REI.6. Solve systems of linear equations exactly and	1
		approximately, e.g., with graphs or algebraically,	
		focusing on pairs of linear equations in two variables	
		A-REI.12. Graph the solutions to a linear inequality in	1
		two variables as a half-plane (excluding the boundary	
		in the case of a strict inequality), and graph the	
		solution set to a system of linear inequalities in two	
		variables as the intersection of the corresponding	
		half-planes.	
Functions (F)		F-IF.6. Calculate and interpret the average rate of	1
		change of a function (presented symbolically or as a	-
		table) over a specified interval. Estimate the rate of	
		change from a graph.*	
	Building Functions	F-BF.1. Write a function that describes a relationship	1
	Dunung Functions	between two quantities.*	-
		a. Determine an explicit expression, a recursive	
		process, or steps for calculation from a context.	
		b. Combine standard function types using arithmetic	
		operations. For example, build a function that models	
		the temperature of a cooling body by adding a	
		constant function to a decaying exponential, and	
		relate these functions to the model. F-BF.4. Find inverse functions.	1
			1 ¹
		a. Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an every	
		function f that has an inverse and write an expression	
		for the inverse. For example, $f(x) = 2x^2$ for $x > 0$ or $f(x) = (x + 1)/(x + 1)$	
		For example, $f(x) = 2x3$ for $x > 0$ or $f(x) = (x + 1)/(x - 1)$	
		for $x \neq 1$.	

Mathematical Domain	Cluster	Standard	Assessed Quarter
Number and Quantity (N)	The Complex Number System	N-CN.1. Know there is a complex number <i>i</i> such that $i2 = -1$, and every complex number has the form $a + bi$ with a and b real.	1, 2
		N-CN.2. Use the relation $i2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	1, 2
		N-CN.7. Solve quadratic equations with real coefficients that have complex solutions.	1, 2
Algebra (A)	Creating Equations and Inequalities	A-CED.2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	1, 2
		A-CED.3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing cost constraints in various situations.	1, 2
		A-CED.4. Rearrange formulas (literal equations) to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.	1, 2
	Reasoning with Equations and Inequalities	A-REI.10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	1, 2
		A-REI.11. Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*	1, 2
	Interpreting Functions	F-IF.1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y = f(x)$.	1, 2 (Algebra)
<u>Geometry (G)</u>	Expressing Geometric Properties with Equations	G-GPE.2. Determine or derive the equation of a parabola given a focus and directrix.	2

Mathematical Domain	Cluster	Standard	Assessed Quarter
<u>Algebra (A)</u>	Arithmetic with Polynomials and Rational Expressions	A-APR.2. Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a , the remainder on division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if ($x - a$) is a factor of $p(x)$.	2
		A-APR.3. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.	2
		A-APR.4. Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $(x2 + y2)2 = (x2 - y2)2 + (2xy)2$ can be used to generate Pythagorean triples.	2
	Reasoning with Equations and Inequalities	A-REI.4. Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in <i>x</i> into an equation of the form $(x - p)2 = q$ that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for x2 = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers a and b .	2
		A-REI.7. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y = -3x$ and the circle $x^2 + y^2 = 3$.	2

Mathematical Domain	Cluster	Standard	Assessed Quarter
Number and Quality (N)	Quantities*	N-Q.1. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	1, 2, 3
		N-Q.2. Define appropriate quantities for the purpose of descriptive modeling.	1, 2, 3
		N-Q.3. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	1, 2, 3
<u>Alegbra (A)</u>	Reasoning with Equations and Inequalities	A-REI.1. Apply properties of mathematics to justify steps in solving equations in one variable.	1, 2, 3
Functions (F)	Interpreting Functions	F-IF.1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If <i>f</i> is a function = and <i>x</i> is an element of its domain, then = $f(x)$ denotes the output of <i>f</i> corresponding to the input <i>x</i> . The graph of <i>f</i> is the graph of the equation $y = f(x)$.	1, 2, 3
		F-IF.2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	1, 2, 3
		 F-IF.4. For a function that models a relationship between two quantities, * interpret key features of graphs and tables in terms of the quantities, and *sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* 	1, 2, 3
		F-IF.5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then negative numbers would be an appropriate domain for the function.*	1, 2, 3
		F-IF.7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*	1, 2, 3

Mathematical Domain	Cluster	Standard	Assessed Quarter
Domain		a. Graph linear and quadratic functions and show	Quarter
		intercepts, maxima, and minima.	
		b. Graph square root, cube root, and piecewise-	
		defined functions, including step functions and	
		absolute value functions.	
		c. Graph polynomial functions, identifying zeros	
		(using technology) or algebraic methods when	
		suitable factorizations are available, and showing end	
		behavior.	
		d. (+) Graph rational functions, identifying zeros and	
		discontinuities (asymptotes/holes) using technology,	
		and algebraic methods when suitable factorizations	
		are available, and showing end behavior.	
		e. Graph exponential and logarithmic functions,	
		showing intercepts and end behavior, and	
		trigonometric functions, showing period, midline, and	
		amplitude.	
		F-IF.9. Compare properties of two functions each	1, 2, 3
		represented in a different way (algebraically,	
		graphically, numerically, in tables, or by verbal	
		descriptions). For example, given a graph of one	
		quadratic function and an algebraic expression for	
		another, say which has the larger maximum.	
	Building Functions	F-BF.3. Identify the effect on the graph of replacing	1, 2, 3
		f(x) by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific	
		values of k (both positive and negative); find the	
		value of k given the graphs. Experiment with cases	
		and illustrate an explanation of the effects on the	
		graph using technology. Include recognizing even and	
		odd functions from their graphs and algebraic	
		expressions for them.	
	Linear, Quadratic,	F-LE.2. Construct linear and exponential functions,	1, 3
	and Exponential	including arithmetic and geometric sequences, given	-
	Models *	a graph, a description of a relationship, or input-	
		output table of values.	
		F-LE.4. For exponential models, express as a	1, 3
		logarithm the solution to $abct = d$ where a, c , and d	_, _
		are numbers and the base b is 2, 10, or e; evaluate	
		the logarithm using technology.	
		F-LE.5. Interpret the parameters in a linear or	1, 3
		exponential function in terms of a context.	
		F-LE.1. Distinguish between situations that can be	3
		modeled with linear functions and with exponential	
		functions.	
	1		
		a. Show that linear functions grow by equal	

Mathematical Domain	Cluster	Standard	Assessed Quarter
		 functions grow by equal factors over equal intervals. b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another. 	
		F-LE.3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	3
	Interpreting Functions	F-IF.8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y = (1.02)t, y = (0.97)t, y = (1.01)12t, y = (1.2)t/10, and classify them as representing exponential growth or decay.	2, 3
<u>Alegbra (A)</u>	Arithmetic with Polnomials and Rational Expressions	A-APR.6. Rewrite simple rational expressions in different forms; write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where $a(x)$, $b(x)$, $q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.	3
	Reasoning with Equations and Inequalities	A-REI.2. Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	3

Mathematical Domain	Cluster	Standard	Assessed Quarter
<u>Algebra (A)</u>	Creating Equations and Inequalities	A-CED.1. Create equations and inequalities in one variable and use them to solve problems. <i>Include</i> <i>equations arising from linear and quadratic</i> <i>functions, and simple rational and exponential</i> <i>functions.</i>	1, 3, 4
Statistics and Probability (S)	Interpreting Categorical and Quantitative Data	S-ID.1. Represent data with plots on the real number line (dot plots, histograms, and box plots).	4
		S-ID.2. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	4
		S-ID.3. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). For example: Justify why median price of homes or income is used instead of the mean.	4
		S-ID.4. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.	4
		S-ID.5. Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data	4
		 S-ID.6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. b. Informally assess the fit of a function by plotting and analyzing residuals. For example: Describe solutions to problems that require interpolation and extrapolation. c. Fit a linear function for a scatter plot that suggests 	4

Mathematical Domain	Cluster	Standard	Assessed Quarter
		a linear association.	
		S-ID.7. Interpret the slope (rate of change) and the	4
		intercept (constant term) of a linear model in the	
		context of the data.	
		S-ID.8. Compute (using technology) and interpret the	4
		correlation coefficient of a linear fit.	
		S-ID.9. Distinguish between correlation and	4
		causation.	
	Making Inferences	S-IC.1. Understand statistics as a process for making	4
	and Justifying	inferences about population parameters based on a	
	Conclusions	random sample from that population.	
		S-IC.2. Decide if a specified model is consistent with	4
		results from a given data-generating process, e.g.,	
		using simulation. For example, a model says a	
		spinning coin falls heads up with probability 0.5.	
		Would a result of 5 tails in a row cause you to	
		question the model?	
		S-IC.3. Recognize the purposes of and differences	4
		among sample surveys, experiments, and	-
		observational studies; explain how randomization	
		relates to each.	
		S-IC.4. Use data from a sample survey to estimate a	4
		population mean or proportion; develop a margin of	7
		error through the use of simulation models for	
		random sampling.	
		S-IC.5. Use data from a randomized experiment to	4
		compare two treatments; use simulations to decide if	-
		differences between parameters are	
		significant.	
		S-IC.6. Evaluate reports based on data.	4
	Canditianal	C CD 1. Describe excepts as subsets of a second success	4
	Conditional	S-CP.1. Describe events as subsets of a sample space	4
	Probability and the	(the set of outcomes) using characteristics (or	
	Rules of Probability	categories) of the outcomes, or as unions,	
		intersections, or complements of other events ("or,"	
		"and," "not").	
		S-CP.2. Understand that two events <i>A</i> and <i>B</i> are	4
		independent if the probability of A and B occurring	
		together is the product of their probabilities, and use	
		this characterization to determine if they are	
		independent.	
		S-CP.3. Understand the conditional probability of A	4
		given B as $P(A \text{ and } B)/P(B)$, and interpret	
		independence of A and B as saying that the	
		conditional probability of A given B is the same as the	
		probability of A, and the conditional probability of B	
		given A is the same as the probability of B.	

Mathematical Domain	Cluster	Standard	Assessed Quarter
		S-CP.4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in 10th grade. Do the same for other subjects and compare the results.	4
		S-CP.5. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.	4
		S-CP.6. Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model.	4
		S-CP.7. Apply the Addition Rule, $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$, and interpret the answer in terms of the model.	4

Geometry Assessed Quarter 1

eing structures in pressions erpreting actions Iding Functions	A-SSE 4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. <i>For example,</i> <i>calculate mortgage payments.</i> * F-IF 3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a	Quarter 1
nctions	F-IF 3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a	
Iding Functions		1
	subset of the integers F-BF 1. Write a function that describes a relationship between two quantities. Determine an explicit expression, a recursive process, or steps for calculation from a context. Combine standard function types using arithmetic operations.	1
	F-BF 2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms	1
ear, Quadratic, d Exponential dels	F-LE 2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a descriptions of a relationship, or input- output table of values	1
ngruence	G-CO 1. Demonstrates understanding of key geometrical definitions, including angle, circle, perpendicular line, parallel line, line segment, and transformations in Euclidian geometry. Understand undefined notions of point, line, distance along a line, and distance around a circular arc.	1
	G-CO 9. Using methods of proof including direct, indirect, and counter examples to prove theorems about lines and angles. <i>Theorems include: vertical</i> <i>angles are congruent; when a transversal crosses</i> <i>parallel lines, alternate interior angles are congruent</i> <i>and corresponding angles are congruent; points on a</i> <i>perpendicular bisector of a line segment are exactly</i> <i>those equidistant from the segment's endpoints.</i>	1
	G-CO 12. Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.	1
		straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given

Mathematical Domain	Cluster	Standard	Assessed Quarter
	Properties with Equations	perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point)	1
		G-GPE 6. Find the point on a directed line segment between two given points that partitions the segment in a given ratio.	1

Geometry Assessed Quarter 2

Mathematical	Cluster	Standard	Assessed
Domain			Quarter
<u>Geometry (G)</u>	Congruence	G-CO 7. Use the definitions of congruence in terms of	
		rigid motions to show that two triangles are	2
		congruent if corresponding pairs of sides and	
		corresponding pairs of angles are congruent.	
		G-CO 8. Explain how the criteria for triangle	
		congruence (ASA, SAS, SSS, AAS, and HL) Follow from	2
		the definition of congruence in terms of rigid motions	
		G-CO 10. Using methods of proof including direct,	
		indirect and counter examples to prove theorems	
		about triangles. Theorems include: measure of	
		interior angles of a triangle sum to 180; base angles	
		of isosceles triangles are congruent; the segment	2
		joining midpoints of two sides of a triangle is parallel	
		to the third side and half the length; the medians of a	
		triangle meet at a point.	
		G-CO 13. Construct an equilateral triangle, a square,	
		and a regular hexagon inscribed in a circle	2
	Similarity, Right	G-SRT 2. Given two figures, use the definition of	2
	Triangles, and	similarity in terms of transformations to explain	2
			Z
	Trigonometry	whether or not they are similar	
		G-SRT 3. Use the properties of similarity	2
		transformations to establish the AA criterion of two	2
		triangles to be similar	
		G-SRT 4. Prove theorems about triangles. Theorems	
		include: a line parallel to one side of a triangle divides	2
		the other two proportionally, and conversely.	
		G-SRT 5. Apply congruence and similarity properties	
		and prove relationships involving triangles and other	2
		geometric figures	
		G-SRT 6. Understand that by similarity, side ratios in	
		right triangles are properties of the angles in the	2
		triangle, leading to definitions of trigonometric ratios	
		for acute triangles.	
		G-SRT 8. Use trigonometric ratios and the	
		Pythagorean Theorem to solve right triangles in	2
		applied problems *	
	Expressing Geometric	G-GPE 4. Perform simple coordinate proofs	
	Properties with		2
	Equations		-
		G-GPE 7. Use coordinates to computer perimeters of	
		polygons and areas of triangles and rectangles	2
	Modeling with	G-MG 1. Use geometric shapes, their measures, and	
	Geometry	their properties to describe objects (e.g., modeling a	

Mathematical Domain	Cluster	Standard	Assessed Quarter
		tree trunk or a human torso as a cylinder).*	2
		G-MG 2. Apply concepts of density based on area and volume in modeling situations. (e.g., persons per square miles, BTUs per cubic feet) *	2
		G-MG 3. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize costs; working with typographic grid systems based on rations) *	2
	Create equations and inequalities	A-CED 4. Rearrange formulas (literal equations) to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's Law V = IR to highlight resistance R.	2

Geometry Assessed Quarter 3

Mathematical Domain	Cluster	Standard	Assessed Quarter
Functions (F)	Trigonometric Functions	F-TF 1. Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle	3
		F-TF 2. Explain how the unit circle in the coordinate plane enables the extension of trigonometric function to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.	3
		F-TF 5. Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. *	3
		F-TF 8. Prove the Pythagorean identity $sin2(\theta) + cos2(\theta) = 1$ and use it to calculate trigonometric ratios.	3
<u>Geometry (G)</u>	Similarity, Right Triangles, and Trigonometry	 G-SRT.1. Verify experimentally the properties of dilations given by a center and a scale factor: a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. b. The dilation of a line segment is longer or shorter 	3
		 in the ratio given by the scale factor. G-SRT 2. Given two figures, use the definition of similarity in terms of transformations to explain whether or not they are similar. 	3
		G-SRT 7. Explain and use the relationship between the sine and cosine of complementary angles.	3
		G-SRT 8. Use trigonometric ratios and the Pythagorean theorem to solve right triangles in applied problems *	3
<u>Functions (F)</u>	Interpreting Functions	 F-IF 7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* a. Graph linear and quadratic functions and show intercepts, maxima, and minima. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. c. Graph polynomial functions, identifying zeros (using technology) or algebraic methods when suitable factorizations are available, and showing end behavior. 	3

Mathematical Domain	Cluster	Standard	Assessed Quarter
Domain		d. (+) Graph rational functions, identifying zeros and	Quarter
		discontinuities (asymptotes/holes) using technology,	
		and algebraic methods when suitable factorizations	
		are available, and showing end behavior.	
		e. Graph exponential and logarithmic functions,	
		showing intercepts and end behavior, and	
		trigonometric functions, showing period, midline, and	
<u>()</u>		amplitude.	2
<u>Geometry (G)</u>	Congruence	G-CO 2. Represent transformations in the plane	3
		using, e.g., transparencies and geometry software;	
		describe transformations as functions that take	
		points in the plane as inputs and give other points as	
		outputs. Compare transformations that preserve	
		distance and angle to those that do not (e.g.,	
		translation versus horizontal stretch).	
		G-CO 3. Given a rectangle, parallelogram, trapezoid,	3
		or regular polygon, describe the rotations and	
		reflections that carry it onto itself.	
		G-CO 4. Develop definitions of rotations, reflections,	3
		and translations in terms of angles, circles,	
		perpendicular lines, parallel lines, and line segments.	
		G-CO 5. Given a geometric figure and a rotation,	3
		reflection, or translation, draw the transformed	
		figure using, e.g., graph paper, tracing paper, or	
		geometry software. Specify a sequence of	
		transformations that will carry a given figure onto	
		another.	
		G-CO 6. Use geometric descriptions of rigid motions	3
		to transform figures and to predict the effect of a	5
		given rigid motion on a given figure; given two	
		figures, use the definition of congruence in terms of	
		rigid motions to decide if they are congruent.	
		G-CO 11. Using methods of proof including direct,	3
			3
		indirect, and counter examples to prove theorems	
		about parallelograms. <i>Theorems include: opposite</i>	
		sides are congruent, opposite angles are congruent,	
		the diagonals of a parallelogram bisect each other,	
		and conversely, rectangles are parallelograms with	
		congruent diagonals.	
		G-CO 13. Construct an equilateral triangle, a square,	3
		and a regular hexagon inscribed in a circle.	
	Modeling with	G-MG 1. Use geometric shapes, their measures, and	3
	Geometry	their properties to describe objects (e.g., modeling a	
		tree trunk or a human torso as a cylinder).*	
		G-MG 2. Apply concepts of density based on area	3
		and volume in modeling situations. (e.g., persons per	
		square miles, BTUs per cubic feet) *	

Mathematical	Cluster	Standard	Assessed
Domain			Quarter
		G-MG 3. Apply geometric methods to solve design	3
		problems (e.g., designing an object or structure to	
		satisfy physical constraints or minimize costs; working	
		with typographic grid systems based on rations) *	
Algebra (A)	Create equations and	A-CED 4. Rearrange formulas (literal equations) to	3
	inequalities	highlight a quantity of interest, using the same	
		reasoning as in solving equations. For example,	
		rearrange Ohm's Law V = IR to highlight resistance R.	
Geometry (G)	Expressing Geometric	G-GPE 4. Perform simple coordinate proofs. For	3
	Properties with	example, prove or disprove that a figure defined by	
	Equations	four given points in the coordinate plane is a	
		rectangle; prove or disprove that the point (1, v 3) lies	
		on the circle centered at the origin and containing the	
		point (0, 2).	
		G-GPE 7. Use coordinates to compute perimeters of	3
		polygons and areas of triangles and rectangles, e.g.,	
		using the distance formula.*	

Geometry Assessed Quarter 4

Mathematical Domain	Cluster	Standard	Assessed Quarter
Geometry (G)	Circles	G-C 1. Prove that all circles are similar.	4
		G-C 2. Identify and describe relationships among inscribed angles, radii, and chords. <i>Include the</i> <i>relationship between central, inscribed, and</i> <i>circumscribed angles; inscribed angles on a diameter</i> <i>are right angles; the radius of a circle is perpendicular</i> <i>to the tangent where the radius intersects the circle.</i>	4
		G-C 3. Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.	4
		G-C 5. Use and apply the concepts of arc length and areas of sectors of circles. Determine or derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.	4
	Expressing Geometric Properties with Equations	G-GPE 1. Determine or derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.	4
	Congruence	G-CO 13. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.	4
	Modeling with Geometry	G-MG 1. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*	4
		G-MG 2. Apply concepts of density based on area and volume in modeling situations. (e.g., persons per square miles, BTUs per cubic feet) *	4
		G-MG 3. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize costs; working with typographic grid systems based on rations) *	4
<u>Algebra (A)</u>	Create equations and inequalities	A-CED 4. Rearrange formulas (literal equations) to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's Law V = IR to highlight resistance R.	4
<u>Geometry (G)</u>	Geometric Measurement and Dimensions	G-GMD 1. Explain how to find the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone.	4
		G-GMD 3. Use volume formulas for cylinders,	4

Mathematical	Cluster	Standard	Assessed
Domain			Quarter
		pyramids, cones, and spheres to solve problems.*	
		G-GMD 4. Identify the shapes of two-dimensional	4
		cross-sections of three-dimensional objects, and	
		identify three-dimensional objects generated by	
		rotations of two-dimensional objects.	

Mathematical Domain	Cluster	Standard	Assessed Quarter
Number and	Vector & Matrices	N-VM 6 – Use matrices to represent and manipulate	1
<u>Quantity (N)</u>	Qualities	data	
		N-VM 7 – Multiply matrices by scalars to produce	1
		new matrices	
		N-VM 8 – Add, subtract, and multiply matrices of	1
		appropriate dimensions	
		N-VM 9 – Understand that, unlike multiplication of	1
		numbers, matrix multiplication for square matrices is	
		not a commutative operation, but still satisfies that	
		associative and distributive properties	
		N-VM 10 – Understand that the zero and identity	1
		matrices play a role in matrix addition and	
		multiplication similar to the role of 0 and 1 in real	
		numbers. The determinant of a square matrix is	
		nonzero if and only if the matrix has a multiplication	
		inverse	
<u>Algebra (A)</u>	Reasoning with	A-REI 9 – Find the inverse of a matrix if it exists	1
	Equations and		
	Inequalities		
Number and	Quantities*	N-Q 1 – Use units as a way to understand problems	1
<u>Quantity (N)</u>		and to guide the solution of multi-step problems;	
		choose and interpret units consistently in formulas;	
		choose and interpret the scale and the origin in	
		graphs and data displays.	
		N-Q 2 – Define appropriate quantities for the purpose	1
		of descriptive modeling	
		N-Q 3 – Choose a level of accuracy appropriate to	1
		limitations on measurement when reporting	
		quantities	
	Complex Number	N-CN 1 – Know there is a complex number I such that	1
	System	i ² = -1, and every complex number has the form a +	
		bi with a and b real	
		N-CN 2 – Use the relation i ² = -1 and the	1
		commutative, association, and distributive properties	
		to add, subtract, and multiply complex numbers	
		N-CN 3 – Find the conjugate of a complex number;	1
		use conjugates to find the moduli and quotients of	
		complex numbers	
		N-CN 7 – Solve quadratic equations with real	1
		coefficients that have complex solutions	
		N-CN 8 – Extend polynomial identities to the complex	1
		numbers	
		N-CN 9 – Know the Fundamental Theorem of Algebra;	1
		show that it is true for quadratic polynomials.	

Mathematical Domain	Cluster	Standard	Assessed Quarter
<u>Algebra (A)</u>	Seeing Structure in Expressions	A-SSE 3 – Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression	1
		A-SSE 1– Interpret expressions that represent a quantity in terms of its context.	1
		A-SSE 2 – Use the structure of an expression to identify ways to rewrite it.	1
	Arithmetic with Polynomials and Rational Expressions	A-APR 1 – Add, subtract, and multiply polynomials. Understand that polynomials form a system similar to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication	1
		A-APR 2 – Know and apply the Remainder Theorem A-APR 3 – Identity zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by	1
		 the polynomial. A-APR 4 – Prove polynomial identities and use them to describe numerical relations 	1
		A-APR 5- Know and apply the Binomial Theorem for the expansion of $(x + y)$ ^n	1

Mathematical Domain	Cluster	Standard	Assessed Quarter
Number and Quantities (N)	Radical Expressions and Functions	N-RN 1- Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents	2
		N-RN 3- Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational	2
		N-RN 2- Rewrite expressions involving radicals and rational exponents using the properties of exponents	2,
<u>Algebra (A)</u>	Reasoning with Equations and Inequalities	A-REI 2 – Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	2
	Arithmetic with Polynomials and Rational Expressions	A-APR 6 – Rewrite simple rational expressions in different forms by using inspection, long division, or, for the more complicated examples, a computer algebra system.A-APR 7 – Add, subtract, multiply, and divide rational expressions. Understand that rational expressions form a system similar to the rational numbers, closed under addition, subtraction, and multiplication, and division by a nonzero rational expression	2

Mathematical Domain	Cluster	Standard	Assessed Quarter
<u>Algebra (A)</u>	Creating Equations and Inequalities*	A-CED 1 – Create equations and inequalities in one variable and use them to solve problems. (linear and quadratic functions, and simple rational and exponential functions)	1, 2, 3
		A-CED 2 – Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	1, 2, 3
		A-CED 3 – Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in modeling context	1, 2, 3
	Reasoning with Equations and Inequalities	A-REI 1 – Apply properties of mathematics to justify steps in solving equations in one variable	1, 2, 3
<u>Functions (F)</u>	Interpreting Functions	F-IF 1 – Understand that a function from one set (domain) to another set (range) assigns to each element of the domain exactly one element of the range. If f and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).	1, 2, 3
		F-IF 2 – Use function notation, evaluate functions for inputs in their domains and interpret statements that use function notation in terms of a context.	1, 2, 3
		F-IF 4 – For a function that models a relationship between two quantities: interpret key features of graphs and tables in terms of the quantities and sketch graphs showing key features given a verbal description of the relationship (increasing, decreasing, positive, negative, relative maximums and minimums, symmetries and end behavior)	1, 2, 3
		F-IF 5 – Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.	1, 2, 3
		F-IF 7 – Graph functions expressed symbolically and show key features of the graph, by and in simple cases and using technology for more complicated cases. Graph linear and quadratic functions and show intercepts, maxima and minima. Graph square root, cube root and piecewise-defined functions, including step functions and absolute value functions. Graph polynomial functions, identifying zeros (using technology) or algebraic methods when suitable factorizations are available and showing end behavior. Graph exponential and logarithmic	1, 2, 3

Mathematical Domain	Cluster	Standard	Assessed Quarter
		functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude	
	Building Functions	F-BF 3 – Identify the effect on the graph of replacing f(x) by $f(x) + k$, $kf(x)$, $f(kx)$ and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them	1, 2, 3
Functions (F)	Building Functions	F-BF 1 – Write a function that describes a relationship between two quantities. Determine an explicit expression, a recursive process, or steps for calculation from a context. Combine standard function types using arithmetic operations. Compose functions.	3
		F-BF 4 – Find inverse functions. Solve an equation of the form $f(x) = c$ for a simple function f that has an inverse and write an expression for the inverse. Verify by composition that one function is the inverse of another. Read values of an inverse function from a graph or a table, given that the function has an inverse. Produce an invertible function from a non- invertible function by restricting the domain.	3
		F-BF 5- Understand the inverse relationship between exponents and logarithms and use this relationship to solve problems involving logarithms and exponents	3

Mathematical Domain	Cluster	Standard	Assessed Quarter
<u>Statistics and</u> <u>Probability (S)</u>	Conditional Probability and the Rules of Probability	S-CP 1 – Describe events as subsets of a sample space using characteristics of the outcomes, or as unions, intersections or complements of other events (or, and, not)	4
		S-CP 2 – Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities and use this characterization to determine if they are independent.	4
		S-CP 3 – Understand the conditional probability of A given B as P(A and B)/P(B) and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A and the conditional probability of B given A is the same as the probability of B	4
		S-CP 4 – Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.	4
		S-CP 5 – Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.	4
		S-CP 6 – Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model	4
		S-CP 7 – Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B) and interpret the answer in terms of the model	4
		S-CP 8-Apply the general Multiplication Rule in a uniform probability model, P(A and B)=P(A)P(B A)=P(B)P(A B), and interpret the answer in terms of the model.	4
		S-CP 9 - Use the permutations and combination to compute probabilities of compound events and solve problems	4
	Interpreting Categorical and Quantitative Data	S-ID 1 – Represent data with plots on the real number line (dot plots, histograms and box plots)	4
		S-ID 2 – Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets	4

Mathematical Domain	Cluster	Standard	Assessed Quarter	
		S-ID 3 – Interpret differences in shape, center, and	4	
		spread in the context of the data sets, accounting for		
		possible effects of extreme data points (outliers)		
		S-ID 4 – Use the mean and standard deviation of a	4	
		data set to fit it to a normal distribution and to		
		estimate population percentages. Recognize that		
		there are data sets for which such a procedure is not		
		appropriate. Use calculators, spreadsheets, and		
		tables to estimate areas under the normal curve.		
		S-ID 5 – Summarize categorical data for two	4	
		categories in two-way frequency tables. Interpret	т	
		relative frequencies in the context of the data		
		(including joint, marginal, and conditional relative		
		frequencies). Recognize possible associations and		
		trends in the data.		
		S-ID 6 – Represent data on two quantitative variables	4	
		on a scatter plot, and describe how the variables are	4	
		related. Fit a function to the data; use functions fitted		
		to data to solve problems in the context of the data.		
		Use given a function or choose a function suggested		
		by the context. Emphasize linear, quadratic and		
		exponential models. Informally assess the fit of a		
		function by plotting and analyzing residuals. Fit a		
		linear function for a scatter plot that suggests a linear		
		association.		
		S-ID 7 – Interpret the slope and the intercept of a	4	
		linear model in the context of the data.		
		S-ID 8 – Compute (using technology) and interpret	4	
		the correlation coefficient of a linear fit.		
		S-ID 9 – Distinguish between correlation and	4	
		causation		
		Least square measurement		
		Two variable statistics		
	Using Probability to	S-MD 1- Define a random variable for a quantity of	4	
	Make Decisions	interest by assigning a numerical value to each event		
		in a sample space; graph the corresponding		
		probability distribution using the same graphical		
		displays as for data distributions.		
		S-MD 2- Calculate the expected value of a random	4	
		variable; interpret it as the probability distribution		
		S-MD 3- Develop a probability distribution for a	4	
		random variable defined for a sample space in which		
		theoretical probabilities can be calculated; find the		
		expected value.		
		S-MD 4- Develop a probability distribution for a	4	

Mathematical	Cluster	Standard	Assessed
Domain			Quarter
		random variable defined for a sample space in which	
		probabilities are assigned empirically; find the	
		expected value.	
Geometry (G)	Expressing Geometric	G-GPE 1- determine or derive the equation of a circle	4
	Properties with	of given center and radius using the Pythagorean	
	Equations	Theorem; complete the square to find the center and	
		radius of a circle given by an equation.	
		G-GPE 2-Determine or derive the equation of a	4
		parabola given a focus and directrix	
		G-GPE 3- Derive the equations of ellipses and	4
		hyperbolas given foci and directrices.	

Mathematical Domain	Cluster	Standard	Assessed Quarter
<u>Algebra (A)</u>	Reasoning with Equations and Inequalities	A-REI.1. Apply properties of mathematics to justify steps in solving equations in one variable.	1
<u>Functions (F)</u>	Interpreting Functions	 F-IF.7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* a. Graph linear and quadratic functions and show intercepts, maxima, and minima. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. c. Graph polynomial functions, identifying zeros (using technology) or algebraic methods when suitable factorizations are available, and showing end behavior. d. (+) Graph rational functions, identifying zeros and discontinuities (asymptotes/holes) using technology, and algebraic methods when suitable factorizations are available factorizations are available, and showing end behavior. e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. 	1

Mathematical Domain	Cluster	er Standard	
Functions (F)	Trigonometric Functions	F-TF.1. Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.	2
		F-TF.2. Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.	2
		F-TF.3. (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi/3$, $\pi/4$ and $\pi/6$, and use the unit circle to express the values of sine, cosines, and tangent for π - x , π + x , and 2π – x in terms of their values for x , where x is any real number.	2
		F-TF.4. (+) Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions.	2
		F-TF.5. Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.*	2
		F-TF.6. (+) Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.	2
		F-TF.7. (+) Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in terms of the context.*	2
		F-TF.8. Prove the Pythagorean identity $sin2(\theta) + cos2(\theta) = 1$ and use it to calculate trigonometric ratios.	2
		F-TF.9. (+) Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.	2

Mathematical Domain			Assessed Quarter
Number and Quantity (N)	Vector and Matrix Quantities	N-VM.1. (+) Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, v , v , v).	3
		N-VM.2. (+) Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.	3
		N-VM.3. (+) Solve problems involving velocity and other quantities that can be represented by vectors.	3
		 N-VM.4. (+) Add and subtract vectors. a. Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes. b. Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum. c. Understand vector subtraction v – w as v + (–w), where –w is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise. 	3
	The Complex	N-VM.5. (+) Multiply a vector by a scalar. a. Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as $c(vx, vy) = (cvx, cvy)$. b. Compute the magnitude of a scalar multiple cv using $ cv = c v$. Compute the direction of cv knowing that when $ c v \neq 0$, the direction of cv is either along v (for $c > 0$) or against v (for $c < 0$). N-CN.4. (+) Represent complex numbers on the	3
	Number System	complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.	3
Geometry (G)	Similarity, Right Triangles, and Trigonometry	G-SRT.6. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.	3
		G-SRT.7. Explain and use the relationship between	3

Mathematical Domain	Cluster	Standard	Assessed Quarter
Domain		the sine and cosine of complementary angles.	Quarter
		G-SRT.8. Use trigonometric ratios and the	3
		Pythagorean Theorem to solve right triangles in applied problems.*	
		G-SRT.9. (+) Derive the formula $A = 1/2 ab \sin(C)$ for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side.	3
		G-SRT.10. (+) Prove the Laws of Sines and Cosines and use them to solve problems	3
		G-SRT.11. (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).	3

Mathematical	Cluster	Standard	Assessed
Domain			Quarter
Standard			
*Based on			4
College Board			
Standards			
Limits *			4
Derivatives *			4
Integral *			4

Personal Finance Class Curriculum (First Semester)					
Mathematical Domain	Cluster	Standard	Sample Teaching Strategy / Possible Integration		
<u>Extend the</u> <u>properties of</u> <u>exponents to</u> <u>rational exponents</u>	Rewrite expressions involving radicals and rational exponents	N-RN.2	Compound interest and Exponential Growth		
Reason quantitatively and use units to solve problems	Multi-step problems, choose and interpret units in formulas, graphs	N-Q.1	Markups, Discounts, Pay checks, Net income		
	Define appropriate quantities in descriptive modeling	N-Q.2	Use appropriate units		
	Choose a level of accuracy appropriate to limitations on measurement	N-Q.3	Accuracy of rounding		
<u>Interpret the</u> <u>structure of</u> <u>expressions</u>	Interpret expressions that represent a quantity	A-SSE.1	Hourly pay, commission, taxes, budgeting, recordkeeping		
	Choose and produce an equivalent form of an expression	A-SSE.3	Taxes, finding unknowns in paycheck		
Arithmetic with Polynomials and Rational Expressions	Add, subtract polynomials	A-APR.1	Loans, paying off and combining		
Creating Equations and Inequalities	One variable equations and use to solve problems	A-CED.1	Credit cards, Housing costs, Insurance		
	Two variable equations	A-CED.2	Closing costs		
	Represent constraints of inequalities	A-CED.3	Tax Tables and income		
	Rearrange formulas	A-CED.4	Buying vehicles, Purchases with discounts and markups		
Interpreting Functions	Domain and Range	F-IF.1	Savings accounts		
	Function notations	F-IF.2	Purchasing a new vehicle		
	Graph relationship	F-IF.4	Home and vehicle loans and		
	between two quantities		purchases		
	Average rate of change	F-IF.6	Cost of item changing, inflation		
	Analyze functions using different representations	F-IF.7	Interest rates, taxes, purchasing homes, Payments		
	Write a function that describes relationship between two quantities	F-BF.1	Paychecks, taxes, insurance		

Personal	Finance	Class	Curriculum	(First Semester	.)

Mathematical Domain	Cluster	Standard	Sample Teaching Strategy / Possible Integration
Linear, Quadratic, and Exponential Models	Modeling linear functions and exponential functions	F-LE.1	Paying off loans, Compound interest
	Observe using graphs and tables increasing exponential quantities	F-LE.3	Simple interest versus compound interest
	Interpret the parameters on a linear or exponential function	F-LE.5	Tax tables, comparing purchases and housing costs
Apply geometric concepts in modeling situations	Use geometric shapes to describe objects	G-MG.1	Pie charts

Business Class Curriculum (Second Semester)					
Mathematical Domain	Cluster	Standard	Sample Teaching Strategy / Possible Integration		
The Real Number	Extend the properties	N-RN.1 Extend the	Compound interest loans,		
<u>System</u>	of exponents to	properties of	sales projections		
	rational exponents	exponents to rational			
		exponents			
<u>Quantities</u>	Reason quantitatively	N-Q.1 Use units as a	Purchasing, discounts,		
	and use unites to	way to understand	mark-ups		
	solve problems	problems			
		N-Q.2 Define	Production,		
		appropriate quantities	reasonableness,		
		N-Q.3 Level of	Money, people, etc		
		Accuracy			
Matrix Quantities		N-VM.7 Perform	Purchasing quantities of		
		operations on matrices	items		
Interpret the structure		A-SSE.1 In terms of	Profit, sales functions,		
of expressions		context	linear programming		
		A-SSE.2 Ways to	Sales		
		rewrite			
		A-SSE.3 Choose and	Sales		
		produce an equivalent			
		form			
Arithmetic with		A-APR.3 Identify zeros	Analyzing profit,		
Polynomial		of polynomials	depreciation		
Expressions					
Creating Equations	Create equations and	A-CED.1 Create one	Business models and cost		
and Inequalities	inequalities that	variable equations			
	describe numbers or				
	relationships				
		A-CED.2 Create two	Profit maximizations,		
		variable equations	warehouse space		
		A-CED.3 Represent	Cost constraints, Linear		
Desseries with		constraints	programming		
Reasoning with		A-REI.1 Justify Steps	Applying properties of		
Equations and			business reasoning		
Inequalities		A-REI.3 Solve linear	Advortising and profit		
		equations and	Advertising and profit, Linear programming		
		inequalities			
	Solve systems of	A-REI.5 System of	Linear programming		
	equations	equations			
		A-REI.6 Solve systems	Linear programming		
		of linear equations			
<u> </u>	Represent and solve	A-REI.10 Understand	Supply and demand		
	equations and	the graph	curves		
	inequalities				
	graphically				
	grapinoung	A-REI.11 Intersection	Linear programming and		
		and solutions from	supply and demand		
		graphs	curves		
Interpreting Functions	Understand the	F-IF.2 Use function	Profit		
interpreting runctions					

Business Class Curriculum (Second Semester)

Mathematical Domain	Cluster	Standard	Sample Teaching Strategy / Possible Integration
	concept of a function and use a function notation	notation	
	Interpret functions that arise in applications in terms of the context	F-IF.4 Models relationship between two quantities	Supply and Demand
		F-IF.5 Appropriate domains	Positive numbers of items sold, etc
		F-IF.6 Calculate and interpret rate of change	Inflation, mark-up rate
	Analyze functions using different representations	F-IF.7 Graph functions	Linear programming sales projections, marketing
		F-IF.9 Compare properties in different ways	Bar graphs, circles graphs
Building functions	Build a function that models a relationship between two quantities	F-BF.1 Write a function that describes a relationship between two quantities	Accounting, assets and liabilities, supply and demand
Linear, Quadratic, and Exponential Models	Construct and compare linear, quadratic, and exponential models and solve problems	F-LE.1b Recognize situations in which one quantity changes at a constant rate	Profit functions, costs functions, depreciation
		F-LE.2 Construct linear and exponential functions input-output tables	Production
	Interpret expressions for functions in terms of the situation they model	F-LE.5 Interpret the parameters in a linear or exponential function	Apply results of business models
<u>Modeling with</u> <u>Geometry</u>	Apply geometric concepts in modeling situations	G-MG.1 Use geometric shapes	Marketing surveys, Pie charts, Accounting records, warehouse space, shape of container for product
Interpreting Categorical and Quantitative Data	Summarize, represent, and interpret data on a single count of measurement variable	S-ID.1 Represent data with plots	Tracking sales over time, Quality control
		S-ID.2 Use statistics to compare data	Use mean, median and mode in sales
	Summarize, represent, and interpret data on two categorical and	S-ID.5 Summarize data for two categories	Frequency tables for Peak hours, most productive work time

Mathematical Domain	Cluster	Standard	Sample Teaching Strategy / Possible Integration
	quantitative variables.		
		S-ID.6 Represent data on two quantitative variable on a scatter plot	Keeping a business journal,
	Interpret linear models	S-ID.7 Interpret slope	Sales potential
		S-ID.8 Line of best fit	Business journal
		S-ID.9 Distinguish between correlation and causation	Look at data to see correlation in profit margins, decrease in profit, etc

Mathematical Domain	Cluster	Standard
Number and Quantity Standards	Quantities	N-Q.1.
		N-Q.2.
		N-Q.3.
Algebraic Standards	Seeing structure in expressions	A-SSE.2.
		A-SSE.3.
	Create equations and inequalities	A-CED.1.
	· · ·	A-CED.2.
		A-CED.3.
		A-CED.4.
	Reasoning with Equations and Inequalities	A-REI.3.
		A-REI.4.
		A-REI.10
		A-REI.11.
		A-REI.12.
Functions Standards	Interpreting Functions	F-IF.4.
Standards		F-IF.5.
		F-IF.6.
		F-IF.7.
		F-IF.9.
	Building Functions	F-BF.1.
	Linear, quadratic, and exponential models	F-LE.1.
		F-LE.2.
		F-LE.5.
Geometry Standards	Geometry Measurement and Dimension	G-GMD.3.
	Modeling with Geometry	G-MG.1.
		G-MG.2.
		G.MG.3.
Statistics and Probability Standards	Interpreting Categorical and Quantitative Data	S-ID.1.
		S-ID.2.
		S-ID.6.
		S-ID.7.

Algebraic Modeling Class Curriculum (First semester) Pre-requisite Passed HSQE or instructor's approval

Statistics Class Curriculum (Second semester)
Pre-requisite: passed HSQE or instructor's approval

Pre-requisite: passed HSQE or instructor's approval		
Mathematical Domain	Cluster	Standard
Interpreting Categorical and Quantitative Data	Summarize, represent, and interpret data on a single count or measurement variable.	S-ID.1 Represent data with plots on the real number line (dot plots, histograms, and box plots).
		S-ID.2 Use statistics appropriate to the shape of data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. S-ID.3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers)
		S-ID.4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.
	Summarize, represent, and interpret data on two categorical and quantitative variables.	S-ID.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.
		 S-ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a) Fit a function to the data; use functions fitted to the data to solve problems in the context of the data Use given functions or choose a function suggested by the context. Emphasize linear, quadratic and exponential models. b) Informally assess the fit of a function by plotting and analyzing residuals. For example: Describe solutions to problems that require interpolation and extrapolation c) Fit a linear function for a scatter plot that suggests a linear association
	Interpret linear models.	S-ID.7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data
		S-ID.8 Compute and interpret the correlation coefficient of a linear fit. S-ID.9 Distinguish between correlation and causation.
Making Inferences and Justifying Conclusions	Understand and evaluate random processes underlying statistical experiments.	S-IC.1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population
		S-IC.2 Decide if a specified model is consistent with

Mathematical Domain	Cluster	Standard
		results from a given data-generating process
	Make inferences and justify	S-IC.3 Recognize the purposes of and differences
	conclusions from sample surveys,	among sample surveys, experiments, and
	experiments, and observational	observational studies; explain how randomization
	studies.	relates to each.
		S-IC.4 Use data from a sample survey to estimate a
		population mean or proportion; develop a margin of
		error through the use of simulation models for
		random sampling.
		S-IC.5 Use data from a randomized experiment to
		compare two treatments; use simulations to decide
		if differences between parameters are significant.
		S-IC.6 Evaluate reports based on data.
Conditional	Understand independence and	S-CP-1 Describe events as subsets of a sample
Probability and	conditional probability and use	space (the set of outcomes) using characteristics (or
the Rules of	them to interpret data.	categories) of the outcomes, or as unions,
Probability	·	intersections, or complements of other events ("or,"
		"and," "not")
		S-CP-2 Understand that two events A and B are
		independent if the probability of A and B occurring
		together is the product of their probabilities, and use
		this characterization to determine if they are
		independent.
		S-CP-3 Understand the conditional probability of A
		given B as P(A and B)/P(B) and interpret
		independence of A and B as saying that the
		conditional probability of A given B is the same as
		the probability of A, and the conditional probability
		of B given A is the same as the probability of B.
		S-CP-4 Construct and interpret two-way frequency
		tables of data when two categories are associated
		with each object being classified.
		S-CP-5 Recognize and explain the concepts of
		conditional probability and independence in
		everyday language and everyday situations
	Use the rules of probability to	S-CP-6 Find the conditional probability of A given B
	compute probabilities of compound	as the fraction of B's outcomes that also belong to
	events in a uniform probability	A, and interpret the answer in terms of the model.
	model.	
		S-CP-7 Apply the addition rule, $P(A \text{ or } B) = P(A) +$
		P(B) - P(A and B)
		S-CP-8 (+)Apply the general Multiplication Rule in a
		uniform probability model and interpret the answer
		in terms of the model
		S-CP-9 (+)Use permutations and combinations to
		compute probabilities of compound events and solve
		problems
Using	Calculate expected values and use	S-MD.1 (+)Define a random variable for a quantity
Probability to	them to solve problems.	of interest by assigning a numerical value to each
Make Decisions	• •	event in a sample space; graph the corresponding
		probability distribution using the same graphical
		displays as for data distributions.

Mathematical Domain	Cluster	Standard	
		variable; interpret it as the mean of the probability distribution.	
		S-MD.3 (+)Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value	
		S-MD.4 (+)Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value.	
	Use probability to evaluate outcomes of decisions.	 S-MD.5 (+)Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values. a) Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fast-food restaurant. b) Evaluate and compare strategies on the basis of expected values. For example, compare a high-deductible versus a low-deductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident. 	
		S-MD.6 (+)Use prob. To make fair decisions.	
		S-MD.7 (+)Analyze decisions and strategies using probability concepts	