Algebraic Modeling Class Curriculum (First semester) Pre-requisite Passed HSQE or instructor's approval

Mathematical Domain	Cluster	Standard	Chapter/ Section
Number and Quantity Standards (N-Q)	Reason quantitatively and use units to solve problems.	N-Q.1. Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.	
	-	N-Q.2. Define appropriate quantities for the purpose of descriptive modeling.	
		N-Q.3. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.	
Algebraic Standards (A-SSE)	Interpret the structure of expressions.	A-SSE.2. Use the structure of an expression to identify ways to rewrite it. For example, see x4 $-y4$ as $(x2)2 - (y2)2$, thus recognizing it as a difference of squares that can be factored as $(x2 - y2)(x2 + y2)$.	
	Write expressions in equivalent forms to solve problems.	A-SSE.3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* a. Factor a quadratic expression to reveal the zeros of the function it defines. For example, x2 + $4x + 3 = (x + 3)(x + 1)$. b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. For example, $x2 + 4x + 3 = (x + 2)2 - 1$. c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15t can be rewritten as $(1.151/12)12t \approx 1.01212t$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.	
Algegraic Standards (A- CED)	Create equations and inequalities that describe numbers or relationships.	A-CED.1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	
		A-CED.2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	
		A-CED.3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing cost constraints in various situations.	

Mathematical	Cluster	Standard	Chapter/
Domain			Section
		A-CED.4. Rearrange formulas (literal equations) to highlight a quantity of interest, using the	
		same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R.	
Algegraic Standards (A-REI)	Solve equations and inequalities in one variable.	A-REI.3. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	
		A-REI.4. Solve quadratic equations in one variable.	
		a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)2 = q$ that has the same solutions. Derive the quadratic formula from this form.	
		b. Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the	
		equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers a and b .	
	Represent and solve equations and inequalities graphically.	A-REI.10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	
		A-REI.11. Explain why the <i>x</i> -coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*	
		A-REI.12. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	
Functions	Interpret	F-IF.4. For a function that models a relationship between two quantities,	
Standards (F-IF)	functions that	 interpret key features of graphs and tables in terms of the quantities, and 	
	arise in	•sketch graphs showing key features given a verbal description of the relationship.	
	applications in	Key features include: intercepts; intervals where the function is increasing, decreasing,	
	terms of the context.	positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.*	

Mathematical	Cluster	Standard	Chapter/
Domain			Section
		F-IF.5. Relate the domain of a function to its graph and, where applicable, to the quantitative	
		relationship it describes. For example, if the function h(n) gives the number of person-hours it	
		takes to assemble n engines in a factory, then negative numbers would be an appropriate	
		domain for the function.*	
		F-IF.6. Calculate and interpret the average rate of change of a function (presented	
		symbolically or as a table) over a specified interval. Estimate the rate of change from a	
		graph.*	
	Analyze functions	F-IF.7. Graph functions expressed symbolically and show key features of the graph, by hand in	
	using different	simple cases and using technology for more complicated cases.*	
	representations.	a. Graph linear and quadratic functions and show intercepts, maxima, and minima.	
		b. Graph square root, cube root, and piecewise-defined functions, including step functions	
		and absolute value functions.	
		c. Graph polynomial functions, identifying zeros (using technology) or algebraic methods	
		when suitable factorizations are available, and showing end behavior.	
		d. (+) Graph rational functions, identifying zeros and discontinuities (asymptotes/holes) using	
		technology, and algebraic methods when suitable factorizations are available, and showing	
		end behavior.	
		e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and	
		trigonometric functions, showing period, midline, and amplitude.	
		F-IF.9. Compare properties of two functions each represented in a different way	
		(algebraically, graphically, numerically, in tables, or by verbal descriptions). For example, given	
		a graph of one quadratic function and an algebraic expression for another, say which has the	
		larger maximum.	
Function	Build a function	F-BF.1. Write a function that describes a relationship between two quantities.*	
Standards (F-BF)	that models a	a. Determine an explicit expression, a recursive process, or steps for calculation from a	
	relationship	context.	
	between two	b. Combine standard function types using arithmetic operations. For example, build a function	
	quantities.	that models the temperature of a cooling body by adding a constant function to a decaying	
		exponential, and relate these functions to the model.	
		c. (+) Compose functions. For example, if T(y) is the temperature in the atmosphere as a	
		function of height, and h(t) is the height of a weather balloon as a function of time, then	
		<i>T(h(t))</i> is the temperature at the location of the weather balloon as a function of time.	

Mathematical	Cluster	Standard	Chapter/
Domain			Section
Functions Standards (F-LE)	Construct and compare linear,	F-LE.1. Distinguish between situations that can be modeled with linear functions and with exponential functions.	
	quadratic, and exponential	a. Show that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.	
	models and solve problems.	b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.	
		c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	
		F-LE.2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or input-output table of values.	
	Internret	E-LE 5. Interpret the parameters in a linear or exponential function in terms of a context	
	expressions for	1 LE.S. Interpret the parameters in a intear of exponential function in terms of a context.	
	functions in		
	terms of the		
	situation they		
	model		
Geometry	Explain volume	G-GMD 3. Use volume formulas for cylinders, pyramids, cones, and spheres to solve	
Standards (G-	formulas and use	problems. For example: Solve problems requiring determination of a dimension not given *	
GMD)	them to solve problems.		
Geometry	Apply geometric	G-MG.1. Use geometric shapes, their measures, and their properties to describe objects (e.g.,	
Standards (G-	concepts in	modeling a tree trunk or a human torso as a cylinder).*	
MG)	modeling situations.		
		G-MG 2 Apply concepts of density based on area and volume in modeling situations (e.g.	
		persons per square mile, BTUs per cubic foot).*	
		G-MG.3. Apply geometric methods to solve design problems (e.g., designing an object or	
		structure to satisfy physical constraints or minimize cost; working with typographic grid	
		systems based on ratios).*	

Mathematical	Cluster	Standard	Chapter/
Domain			Section
Statistics and	Summarize,	S-ID.1. Represent data with plots on the real number line (dot plots, histograms, and box	
Probability	represent, and	plots).	
Standards (S-SID)	interpret data on		
	a single count or		
	measurement		
	variable.		
		S-ID.2. Use statistics appropriate to the shape of the data distribution to compare center	
		(median, mean) and spread (interquartile range, standard deviation) of two or more different	
		data sets.	
	Summarize,	S-ID.6. Represent data on two quantitative variables on a scatter plot, and describe how the	
	represent, and	variables are related.	
	interpret data on	a. Fit a function to the data; use functions fitted to data to solve problems in the context of	
	two categorical	the data. Use given functions or choose a function suggested by the context. Emphasize	
	and quantitative	linear, quadratic, and exponential models.	
	variables.	b. Informally assess the fit of a function by plotting and analyzing residuals. For example:	
		Describe solutions to problems that require interpolation and extrapolation.	
		c. Fit a linear function for a scatter plot that suggests a linear association.	
	Interpret linear	S-ID.7. Interpret the slope (rate of change) and the intercept (constant term) of a linear model	
	models.	in the context of the data.	