Quarter 2 Grade 3- Mathematics District Benchmark
Standards Key:
4. I exceed all skills within the standard by demonstrating more complex understanding
3. I demonstrate all skills within the standard
2. I demonstrate some skills within the standard 1. With help, I can demonstrate some skills within the standard 0 . Even with help, I cannot demonstrate skills within the standard No Score - Not assessed or not yet taught

Standard	Question Number	Score	Overall Standard Score
3.OA. 3			
Use multiplication and division numbers up to 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	1		
	7		
3.0A. 6 Understand division as an unknown-factor problem. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8 .			
	4		
	8		
3.OA. 7 Fluently multiply and divide numbers up to 100 , using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.			
	2		
	6		
3.0A. 9 Identify arithmetic patterns (including patterns in the addition table or multiplication table) and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.			
	3		
	5		
3.NF.3b Recognize and generate simple equivalent. Explain why the fractions are equivalent.	9		
3.NF.3d Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions (e.g., by using a visual fraction model).	10		

