Fourth Grade Energy (approximately 12 weeks)

Big Ideas:

- Energy is present whenever there are moving objects, sound, light, or heat.
- Waves are energy with regular patterns of motion.
- Information can be transmitted using energy waves.

Essential Questions

- How is energy transferred from place to place?
- How is energy related to waves?
- How is energy used to send information?
- How can energy be converted from one form to another?

Vocabulary:

Motion, heat, energy, friction, change of speed (acceleration, deceleration), change of direction, force, insulation, conduction, convection, radiation, wavelength, frequency, amplitude

Students who demonstrate understanding can:

- **4-PS3-1.** Use evidence to construct an explanation relating the speed of an object to the energy of that object. [Assessment Boundary: Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy.
- 4-PS3-2. Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
- **4-PS3-3. Ask questions and predict outcomes about the changes in energy that occur when objects collide.**[Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact.] [Assessment Boundary: Assessment does not include quantitative measurements of energy.]
- **4-PS3-4.** Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.* [Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]
- **4-PS4-1.** Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move. [Clarification Statement: Examples of models could include diagrams, analogies, and physical models using wire to illustrate wavelength and amplitude of waves.] [Assessment Boundary: Assessment does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.]
- **4-PS4-2. Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.** [Assessment Boundary: Assessment does not include knowledge of specific colors reflected and seen, the cellular mechanisms of vision, or how the retina works.]

4-PS4-3. Generate and compare multiple solutions that use patterns to transfer information.* [Clarification Statement: Examples of solutions could include drums sending coded information through sound waves, using a grid of 1's and 0's representing black and white to send information about a picture, and using Morse code to send text.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in grades 3–5 builds on grades K–2 experiences and progresses to specifying qualitative relationships.

 Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships. (4-PS3-3)

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

 Make observations to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. (4-PS3-2)

Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Use evidence (e.g., measurements, observations, patterns) to construct an explanation. (4-PS3-1)
- Apply scientific ideas to solve design problems. (4-PS3-4)

Obtaining, Evaluating, and Communicating Information Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluate the merit and accuracy of ideas and methods.

 Obtain and combine information from books and other reliable media to explain phenomena. (4-ESS3-1)

Disciplinary Core Ideas

PS3.A: Definitions of Energy

- The faster a given object is moving, the more energy it possesses. (4-PS3-1)
- Energy can be moved from place to place by moving objects or through sound, light, or electric currents. (4-PS3-2),(4-PS3-3)

PS3.B: Conservation of Energy and Energy Transfer

- Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. (4-PS3-2), (4-PS3-3)
- Light also transfers energy from place to place. (4-PS3-2)
- Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. (4-PS3-2),(4-PS3-4)

PS3.C: Relationship Between Energy and Forces

 When objects collide, the contact forces transfer energy so as to change the objects' motions. (4-PS3-3)

PS3.D: Energy in Chemical Processes and Everyday Life

 The expression "produce energy" typically refers to the conversion of stored energy into a desired form for practical use. (4-PS3-4)

ESS3.A: Natural Resources

 Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not. (4-ESS3-1)

Crosscutting Concepts

Energy and Matter

 Energy can be transferred in various ways and between objects. (4-PS3-1),(4-PS3-2),(4-PS3-3),(4-PS3-4)

Cause and Effect

- Cause and effect relationships are routinely identified and used to explain change. (4-ESS3-1)
- Cause and effect relationships are routinely identified, tested, and used to explain change. (4-ESS3-2)

Connections to Engineering, Technology, and Applications of Science Interdependence of Science, Engineering, and Technology

 Knowledge of relevant scientific concepts and research findings is important in engineering. (4-ESS3-1)

Influence of Engineering, Technology, and Science on Society and the Natural World

- Over time, people's needs and wants change, as do their demands for new and improved technologies. (4-ESS3-1)
- Engineers improve existing technologies or develop new ones. (4-PS3-4)

Connections to Nature of Science Science is a Human Endeavor

- Most scientists and engineers work in teams. (4-PS3-4)
- Science affects everyday life. (4-PS3-4)

ETS1.A: Defining Engineering Problems

Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (secondary to 4-PS3-4)

Connections to other DCIs in fourth grade: N/A

Articulation of DCIs across grade-levels:

K.PS2.B (4-PS3-3); K.ETSĬ.A (4-PS3-4); 2.ETS1.B (4-PS3-4); 3.PS2.A (4-PS3-3); 5.PS3.D (4-PS3-4); 5.LS1.C (4-PS3-4); 5.ESS3.C (4-ESS3-1); MS.PS2.A (4-PS3-3); MS.PS3.A (4-PS3-1); MS.PS3.B (4-PS3-2),(4-PS3-3),(4-PS3-3),(4-PS3-3); MS.PS3.D (4-ESS3-1); MS.PS3.D (4-ESS3-1); MS.ESS3.D (4-ESS3

Common Core State Standards Connections:

ELA/Literacy -

RI.4.1 Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-PS3-1)

RI.4.3 Explain events, procedures, ideas, or concepts in a historical, scientific, or technical text, including what happened and why, based on specific information in the text. (4-PS3-1)

RI.4.9 Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-PS3-1)

W.4.2 Write informative/explanatory texts to examine a topic and convey ideas and information clearly. (4-PS3-1)

W.4.7 Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-PS3-2),(4-PS3-3),(4-PS3-4),(4-ESS3-1)

W.4.8 Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-PS3-1),(4-PS3-2),(4-PS3-3),(4-PS3-4),(4-ESS3-1)

W.4.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (4-PS3-1),(4-ESS3-1)

SL.4.5 Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes and to engage listeners more fully. (4-PS4-1) (4-PS4-2)

Mathematics -

MP.4 Model with mathematics. (4-ESS3-1)

4.G.A.1 Draw points, lines segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines, and intersecting line segments. Identify these in two-dimensional (plane)

figures. (4-PS4-1) (4-PS4-2)

4.OA.A.3 Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and

estimation strategies including rounding. (4-PS3-4)